

LLRF system for the Fermilab PIP-II Superconducting LINAC

P. Varghese, B. Chase, S. Raman, Syed. A, P. Hanlet, D. Nicklaus, FNALL. Doolittle, S. Murthy, K. Penney, LBNLC. Hovater, J. Latshaw, JLAB23 October 2023

PIP-II is a partnership of:

US-DOE
India-DAE
Italy-INFN
UK-STFC-UKRI
France-CEA, CNRS/IN2P3
Poland-WUST, WUT, TUL

Outline

- 1. PIP2-LINAC Accelerator Components
- 2. Physics Requirements LLRF Specifications
- 3. LLRF Systems
 - a) RFQ
 - b) Bunchers 1-4
 - c) HWR Cryomodule
 - d) SSR1 Cryomodule
 - e) HB650 Cryomodule
- 3. LLRF Testing at CMTF and STC
- 4. EPICS User Interface
- 5. Results and system performance

LLRF202

OCTOBER 22-27, 2023 IN GYEONGJU, REPUBLIC OF KOREA

Fermilab Accelerator Complex

PIP-II

LLRF2023

LOW LEVEL RADIO FREQUENCY WORKSHOP 2023

OCTOBER 22-27, 2023 In Gyeongju, Republic of Korea

PIP-II Superconducting RF CW Linac, 800 MeV Consists of

‡Fermilab

PIP2-IT Accelerator Components

lon Source RFQ, B1 VXI Crate 2 MFC cards Buncher2,3 1 SOCMFC Chassis

HWR 4 SOCMFC Chassis 1 Tuner Signal Cond Module

SSR1 4 SOCMFC Chassis 2 Resonance Control Chassis

🛟 Fermilab

LLRF202

TOBER 22-27, 2023 Steongju, Republic of Korea

PIP2 LLRF Systems

CM type	Cavities per CM	Number of CMs	CM config- uration ⁺	CM length (m)	$Q_0 \text{ at } 2 \text{K} \ (10^{10})$	Surface resistance, $(n\Omega)$	Loaded Q^{\triangle} (10 ⁶)
HWR	8	1	8×(sc)	5.93	0.5	9.6 (2.75 [†])	2.32
SSR1	8	2	4×(csc)	5.53	0.6	14 (10 [‡])	3.02
SSR2	5	7	SCCSCCSC	6.3*	0.8	14.4	5.05
LB650	4	9	cccc	5.52*	2.15	9.0	10.36
HB650	6	4	cccccc	9.92*	3	8.7	9.92

	Station	Total										
	1	2	3	4	5	6	7	8	9	10	11	
	RFQ,	HWR	SSR1-	SSR2-	SSR2-	SSR2-	LB650-	LB650-	LB650-	HB650-	HB650-	
	B1-4		1,2	1,2,3	4,5	6,7	1,2,3	4,5,6	7,8,9	1,2	3,4	
Number of	6	8	16	15	10	10	12	12	12	12	12	125
cavities												
RF Freq	162.5	162.5	325	325	325	325	650	650	650	650	650	
(MHz)												

S4-S11 – SSR2 (7), LB650 (9), HB650 (4)

LLRF2023

LOW LEVEL RADIO FREQUENCY WORKSHOP 2023

OCTOBER 22-27, 2023 IN STEONGJU, REPUBLIC OF KOREA

4-cavity LLRF Station Rack – Components 1

8-Channel Downconverter

4-Channel Upconverter

UC/DC Power Supply

LLRF Controller

LLRF Controller

Resonance Controller

RCC Power Supply

LBL-Marble RFS Xilinx – Kintex

LOW LEVEL RADIO FREQUENCY WORKSHOP 2023

 \sim

PIP-II

‡Fermilab

LLRF202

OCTOBER 22-27, 2023 IN STEONGJU, REPUBLIC OF KOREA

P.Varghese

PIP-II LLRF System

FNAL- LLRF Controller

Intel – Arria10 SOC

4-cavity LLRF Station Rack – Components 2

JLAB/FNAL

(Marble FPGA) Xilinx – Kintex

1320 MHz Clock Distribution

LO Distribution

Reference Distribution

Dual Temperature Controller

8-Channel Downconverter

8-Channel Downconverter

4-Channel Upconverter

UC/DC Power Supply

LLRF Controller

LLRF Controller

Resonance Controller

RCC Power Supply

Resonance Controller

LOW LEVEL RADIO FREQUENCY WORKSHOP 2023

 \sim

PIP-II

 \mathcal{M}

‡Fermilab

LURF202

OCTOBER 22-27, 2023 IN STEONGJU, REPUBLIC OF KOREA

P.Varghese

PIP2 4-Cavity RF Station

PIP-II

ww

LLRF2023

LOW LEVEL RADIO FREQUENCY WORKSHOP 2023

Cavity3,4 Detuning (Fiber)

LLRF System Architecture 1 - Amp/Phs Control

‡Fermilab

LLRF202

OCTOBER 22-27, 2023 IN STEONGJU, REPUBLIC OF KOREA

PIP-II

www

LLRF2023

LOW LEVEL RADIO FREQUENCY WORKSHOP 2023

SEL System Architecture

Fermilab

LLRF202

OCTOBER 22-27, 2023 IN STEONGJU, REPUBLIC OF KOREA

LLRF2023

LOW LEVEL RADIO FREQUENCY WORKSHOP 2023

11 10/23/2023 P.Varghese

LLRF System Architecture 2 – I/Q Control

🛟 Fermilab

LLRF202

OCTOBER 22-27, 2023 IN STEONGJU, REPUBLIC OF KOREA

PIP-II

www

LLRF2023

LOW LEVEL RADIO FREDUENCY WORKSHOP 2023

Resonance Controller Architecture

Resonance Controller FPGA Block Diagram

13 10/23/2023 P.Varghese

•

PIP-II LLRF System

‡Fermilab

Resonance Control Processing

PIP-II LLRF System

‡ Fermilab

HWR LLRF System with Pneumatic Tuner Control

.RF2023

LOW LEVEL RADIO FREQUENCY WORKSHOP 2023

OCTOBER 22-27, 2023 IN STEONGJU, REPUBLIC OF KOREA

HWR Resonance Control Design

em: sys6d juency (Hz): 0.0748

10-1

8-1440

e -2880 -4320

Physical Model

Controller Implementation

Control System Simulation

PIP-II

023

LOW LEVEL RADIO FREDUENCY WORKSHOP 2023

LLRF202

OCTOBER 22-27, 2023 IN SYEONGJU, REPUBLIC OF KOREA

HWR Control Performance

HWR Amplite	ude and	Phase Re	egulatio	n	
	Cavity4	Cavity5	Cavity6	Cavity7	Cavity8
Cavity Field Setpoint (MV/m)	2.89	6.04	8.94	8.5	8
Amplitude Regulation (rms) %	0.0135	0.0106	0.0101	0.0081	0.0103
Phase Regulation (rms) deg	0.0228	0.0065	0.0056	0.0055	0.0062
Feedback Proportional Gain	1000	1000	1000	1000	1000
Feedback Integral Gain (rad/sec)	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000

LLRF2023

OCTOBER 22-27, 2023 IN STEONGJU, REPUBLIC OF KOREA

PIP-II

PIP-II Specifications

- Energy Stability(Linac) < 0.01%
- Amplitude Regulation(individual cavity) < 0.06 rms %
- Phase Regulation
- Maximum detuning

< 20 Hz

< 0.06 rms deg

RF Cavity Parameters and Feedback Gains

Cavity Type	Q_L	f_0	f_H	K_P
		(MHz)	(Hz)	
Warm Cavity	3000	53	$8.83 imes10^3$	15
RFQ	15000	162.5	$5.542 imes 10^3$	23
Buncher Cavity	10000	162.5	$8.125 imes 10^3$	16
HWR Cavity	2.32×10^6	162.5	35	3548
SSR1 Cavity	$3.02 imes 10^6$	325	53.8	2317
SSR2 Cavity	$5.05 imes 10^6$	325	32.2	3846
LB650 Cavity	$10.36 imes 10^6$	650	31.4	3935
HB650 Cavity	$9.92 imes 10^6$	650	32.76	3801
LCLSII Cavity	$4 imes 10^7$	1300	16.25	7600

Maximum Feedback Gains computed for Stability with a 45 degree phase Margin with 1 us Loop delay

🛟 Fermilab

LLRF202

OCTOBER 22-27, 2023 IN SYEONGJU, REPUBLIC OF KOREA

LLRF2023

PIP-II

SSR1 LLRF System with Piezo Tuner Control

🛟 Fermilab

LLRF202

OCTOBER 22-27, 2023 IN SYEONGJU, REPUBLIC OF KOREA

PIP-II

ww

.RF2023

LOW LEVEL RADIO FREQUENCY WORKSHOP 2023

SSR1 Cryomodule Testing

	SSR	1 Amplitud	de and Pha	se Regula	tion			
	Cavity1	Cavity2	Cavity3	Cavity4	Cavity5	Cavity6	Cavity7	Cavity8
Cavity Field Setpoint (MV/m)	4.88	4.63	4.78	7.32	7.8	7.56	7.32	10
Amplitude Regulation (rms) %	0.0194	0.0289	0.0219	0.0157	0.014	0.0158	0.0147	0.0124
Phase Regulation (rms) deg	0.0116	0.0164	0.0118	0.0091	0.0088	0.0093	0.0092	0.0076
Feedback Proportional Gain	1600	1600	1600	1600	1600	1600	1600	1600
Feedback Integral Gain (rad/sec)	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000

RF Detune Calibration

$$\begin{split} \ddot{\mathbf{V}}(t) &+ \frac{\omega_0}{Q_L} \dot{\mathbf{V}}(t) + \omega_0^2 \mathbf{V}(t) = \frac{\omega_0 R_L}{Q_L} \dot{\mathbf{I}}(t) \\ &\frac{d\vec{V}}{dt} = (-\omega_{1/2} + j\Delta\omega)\vec{V} + R_L \omega_{1/2}\vec{I} \\ &\frac{d\vec{V}}{dt} = a\vec{V} + b\vec{K}_1 \\ &a = \frac{1}{\vec{M}_V} \cdot \left[\frac{d\vec{M}_V}{dt} - \beta\vec{M}_K\right] \end{split}$$

Fermilab

LLRF202

OCTOBER 22-27, 2023 IN GYEONGJU, REPUBLIC OF KOREA

- The cavity is operated in pulse mode with a cavity field ~ 1/2 FS magnitude and the cavity probe and forward waveforms are recorded.
- Numerical analysis of the acquired data provides cavity parameters such as half bandwidth and the detuning constants

Cavity Quench Detection/ Overdrive Protection

- Quench Detection is based on computing the dissipated power in the cavity. The dissipated power is compared against a threshold for quench detection
- RF overdrive is detected when the controller output saturation persists beyond a specified time (~ 1 sec)

🚰 Fermilab

LLRF202

OCTOBER 22-27, 2023

HB650 and LB650 Cavity Testing at STC

- HB650, beta=0.9, B9A-AES-001
- January-March 2020
- STC commissioning for 650 MHz operations
- Prototype coupler/tuner validation/testing
- Prototype cavity characterization

• HB650, beta=0.92, **B92D-RRCAT-502**

HB650 B92D-RRCAT-502

- October-November 2021
- Prototype coupler/tuner validation/testing
- Prototype cavity characterization, qualification for prototype HB650 cryomodule assembly

- June-September 2022
- · Preproduction coupler/tuner testing
- · Prototype cavity characterization

Bare HB650 Cavity

LB650 Cavity on ANL EP stand

LLRF2023

LOW LEVEL RADIO FREQUENCY WORKSHOP 2023

OCTOBER 22-27, 2023 IN STEONGJU, REPUBLIC OF KOREA

 $\sim\sim\sim$

PIP-II

LB650 Cavity Measurements

4/5π Mode, 625 kHz

3/5π Mode, 2.125 MHz

Suppression with notch filters

LFD Coefficient = 2.4

Detuning Spectrogram

LLRF202

OCTOBER 22-27, 2023 IN SYEONGJU, REPUBLIC OF KOREA 🛟 Fermilab

24 10/23/2023 P.Varghese

PIP-II LLRF System

 \sim

PIP-II

ιλλλλ

HB650 Cavity Measurements

GDR Mode 15 MV/m

Piezo Tuner Controls

Tuner Waveforms

un

LLRF2023

LOW LEVEL RADIO FREDUENCY WORKSHOP 2023

Piezo Transfer Function

OCTOBER 22-27, 2023 IN SYEONGJU, REPUBLIC OF KOREA

LLRF202

Prototype HB650 Cryomodule Testing at CMTF

pHB650 Cryomodule

40 kW SSA

PIP-II

SSA Calibration

SELAP Mode at 7 MV/m

OCTOBER 22-27, 2023 IN SYEONGJU, REPUBLIC OF KOREA

LLRF202

‡Fermilab

Prototype HB650 Cryomodule Testing at CMTF

Piezo Waveforms

GDR Mode at 5MV/m

LLRF2023

LOW LEVEL RADIO FREQUENCY WORKSHOP 2023

PIP-II

un

LURF202

OCTOBER 22-27, 2023 IN GYEONGJU, REPUBLIC OF KOREA

User Interfaces

				• × •
File Edit Operate Tools Window Help	15			2
🔿 @ 😑				1
Waveform / Scalar / FFT Display Full Speed Waveform /FFT Disp	olay System Timing Ql Analysis Cavity C	alculations Example MATLA8 scripts	SSR1 LABVIEW BUILD: 10/14/20	20 ^
Waterier Calibration (PTD Day) Data Specific Neutrino (PTD Day) Days /s. However Neutrino (PTD Day) Non- Non- Non- Non- Non-	(a) (b) (b) <td>State Experimentation 0 State State 0 State State</td> <td>Stot Linderwice AULD: 10:101 Hermit The Store Autom Hermit The Store Autom Store Autom Difference Autom</td> <td></td>	State Experimentation 0 State State	Stot Linderwice AULD: 10:101 Hermit The Store Autom Hermit The Store Autom Store Autom Difference Autom	
Terre Loo (a) 24/55 (Annahue) (a) 25/55 (c) 25	Chiptry A Type Select Workform Piot. ~~ ar Dicaply Range (nc)	Time (u) 1/2/1/2/ Amplitude Credy Sidelar "-Bu (AVVI) Constrained and the set office (a) 2000 (a) 20	ad bigling hypeds rad between every ty Sand 30. Served Weederms Sared Weederms	sR1
CLUERSSEL, MAD, Denksill, MAD, Andréa, JMAD, Andréa, JMAD, Parkell, S., MAD, Andréa, JMAD, Andréa, J	W0 (fear, frinin dat)	HeACKE Number of sendering spirits Number of sendering (FG conscious exertisme) Wordsom time set (FG collection Certy to SR collection Certy to SR collection Field to applicate allocation Field to applicate allocation Field to applicate allocation Field to applicate allocation	Concey May Minimi Concey May Minimi Concey May Concey Caracy Server Preser (1994) For Preser (1994)	

EPICS

Labview

🗙 РА РЗО	LLRF/H	IPRF Cont	rol <n< th=""><th>loSets</th><th>><dp< th=""><th>M-DP</th><th>M03 (1%):</th><th>•</th><th></th><th></th><th>-</th><th>-</th><th></th><th></th></dp<></th></n<>	loSets	> <dp< th=""><th>M-DP</th><th>M03 (1%):</th><th>•</th><th></th><th></th><th>-</th><th>-</th><th></th><th></th></dp<>	M-DP	M03 (1%):	•			-	-		
P30 SSR	1 CA\	/ITY5 C	ALIE	BRAT	IONS		SE	T	D/A	A7	Com	-U	Pgm_	Too
	*5н•	X-H/U	X=	TWF		Y=Z	NENUM	, Z : NI	-UUI ,.	2:NX	MUHI,Z		CHLC	
COMMHNU		Eng-U	1=	×.		1=	,	, 20	07000,	250	, ;	280	2000	
-<14>+	r_eo	HUTU	F = 1	. 1		F= .	2009000	, 20	19000,	200		200	9000	
	DORI	810	Dal											
: CHVII	T D :	TED CO			DNIC .									
: DOWNC	CMG	CIER UH	0.101	CON		Mad							0.1	
-P:335CD	CPU		00	COV	DC	Diag		27			1			
-P.33500	CMG		05	ELID	DC	Mad	-	-37			4			
-P:335FD	CMD		CE	FWD	DC	nag Dhaei		_97	=		т 97 Б		ded	
-P:335FU	CMB		CE	DEV	DC	Mad	3	-07			4		0-1	
-P:335RU	CDU		05	DEV		mag	_	1 1 1			1 445 5		dod	
D. SSORU	DCM		00	DEE	DC	Mad		-110			4			
D. CODRF	DCP		00	DEE	DC	Dhae		-			~		ded	
LUNTT		DATTON	C0	REF	υC	Filasi		0					ueg	
D. SSECS	TMV	INTEL ON		COV	801	to	45.7				2 6000	000		
-P:33503	TEO		0	CAV	201	to 1	nv Sant (UI)	3.0	209999	9	3.0099:	999		
P: 55505	EN		00	COV	1.001	- 4 lo -	5գու(ա)		NE.					
-P:33500	TEO		CE	ELID	Sel	g uni	East (11)	. 20	20 504		1 626		1.1	
-P:335F3	130		05	DEV	301	to :	Sqrt(W)	1.0	20		1.020			
P:SSER	130		CE	Eno	- Tm	L 0 5	syrt(w)	_ 24	50 524000		26240			
-P:335F1	102		0	Cou	4 11	K UT 01	r 10 H2	30	251333	9 -	400000	222		
-P:555CH	VQL		60	Lav.	Lug	ωL		400	000000		400000			
! AVERA	GING	WINDOW	IS !											
P:SS5CA	VST		C5	CAV	Âv⊴	Gat	e Start	100	00		1000		us	
P:SS5CA	VWD		C5	CAV	Ave	Gat	e ⊎idth	100	00		1000		us	
-P:SS5FA	VST		C5	FWD	Ave	Gat	e Start	100	00				us	
-P:SS5FA	VWD		C5	FWD	Ave	Gat	e Width	100	00		1000		us	
-P:SS5RA	VST		C5	REV	Ave	Gat	e Start	100	00				us	
-P:SS5RA	VWD		сs	REV	Ave	Gat	e Width	100	00		1000		us	
! SCALA	R REF	DBACKS												
P:SS5CA	VMG		C5	CAV	Mag						.00123	59	MV/m	
P:SS5CA	VPH		C5	CAV	Pha	se					10.024	592	deg	
P:SS5CA	VPP		C5	CAV	Pro	be P	ω						Watt	
P:SS5FW	MG		C5	FWD	Pow	Mag					. 00000	004	kW	
P:SS5FW	PH		C5	FWD	Pow	Pha	зе				3.1749	376	deg	
P:SS5RV	MG		С5	REV	Pow	Mag					. 00000	006	ĸω	
P:SS5RV	PН		C5	REV	Pow	Pha	зе				17.323	978	deg	
P:SS5CA	VET		C5	CAV	Fre	a Tr	acking				.72439	998	Hz	
P:SS5RE	SER		C5	Res	onan	ce Fr	rea Err	or			2		Hz	

ACNET

LLRF2023

OCTOBER 22-27, 2023 IN SYEONGJU, REPUBLIC OF KOREA

VIVI

LLRF2023

LOW LEVEL RADIO FREQUENCY WORKSHOP 2023

Summary

- PIP-II LLRF System is in the Final Design Review Stage
- The design is closely aligned with the LCLS-II LLRF system
- Various hardware/software components have been tested at PIP2-IT and STC
- The LLRF systems at PIP2-IT met the project requirements
- All the different cavity types(7) have been tested with the LLRF system
- Final design prototypes will continue to be tested at both facilities

🛟 Fermilab

LLRF202

OCTOBER 22-27, 2023 IN GYEONGJU, REPUBLIC OF KOREA

- The EPICS user interface has been used in the test stands
- The Final Design Review is expected in early 2024

Thank You!

PIP-II

LLRF2023

LOW LEVEL RADIO FREDUENCY WORKSHOP 2022

OCTOBER 22-27, 2023 IN STEONGJU, REPUBLIC OF KOREA

RFQ and B1 LLRF System

023

LLRF20

LOW LEVEL RADIO FREQUENCY WORKSHOP 2023

PIP-II

LLRF2023

OCTOBER 22-27, 2023 In Gyeongju, Republic of Korea

Beam Loading Compensation – B2

RE₂

LOW LEVEL RADIO FREQUENCY WORKSHOP 2023

023

PIP-II

ww

LLRF2023

OCTOBER 22-27, 2023 IN GYEONGJU, REPUBLIC OF KOREA

Q_L Measurement

PIP-II LLRF System

HWR Cavity 5, *Q*_{*L*} = 2.07e6

SSR1 Cavity 5, *Q*_{*L*} = 4.11e6

