

Measurement of the cavity-loaded quality factor in SC radio-frequency systems with mismatched source impedance

J.Y. Ma (majinying@impcas.ac.cn), F. Qiu*(qiufeng@impcas.ac.cn), Z. Gao, A.D. Wu, Z.L. Zhu, G.R. Huang Institute of Modern Physics (IMP), LanZhou, China

Abstract

The accurate measurement of parameters such as the cavity-loaded quality factor ($Q_{\rm L}$) and half bandwidth ($f_{0.5}$) is essential for monitoring the performance of superconducting radio-frequency cavities. However, the conventional "field decay method" employed to calibrate these values requires the cavity to satisfy a "zero-input" condition. This can be challenging when the source impedance is mismatched and produce nonzero forward signals ($V_{\rm f}$) that significantly affect the measurement accuracy. To address this limitation, we developed a modified version of the "field" decay method" based on the cavity differential equation. The proposed approach enables the precise calibration of $f_{0.5}$ even under mismatch conditions. We tested the proposed approach on the SRF cavities of the Chinese Accelerator-Driven System Front-End Demo Superconducting Linac and compared the results with those obtained from a network analyzer. The two sets of results were consistent, indicating the usefulness of the proposed approach.

- A residual attenuation signal of $V_{\rm f}$ is observed after turning off the RF power (see Fig. (d)). Two possible reasons for this:
 - crosstalk between I. The the measurement channels, that is, the residual signal of $V_{\rm f}$ is coupled with the signal $V_{\rm r}$.
- Scanning tuner (fpc=const.) **(C**) Scanning signal generator (Tuner off) (Hz] (160 150 130 Ca -300 -200 200 -100 100 Cavity detuning (Δf_{decay}) [Hz] Comparison of the dependency relationships at when Δf_{decay} is scanned by the signal source 0.8 **(d)** 0.7 0.08 0.06 0.6 0.04
- 1.5 0.4 0.1

- The simulation and measurement results are coincident when considering LFD and impedance mismatch.
- Cavity phase curves overlap in the first 80 after the RF μs power is turned off, thus, we fit the 80 µs cavity phase data to obtain Δf .

Comparison of the cavity voltage (a), cavity forward (b), and reflected signal (c) measurements based on the cavity model (red) and real SC cavity (gray)

The residual $V_{\rm f}$ signal could be attributed to impedance mismatch (CAFe directional coupler with high directivity (40 dB) while not installing a high-power circulator).

Relationship between the cavity half bandwidth and cavity detuning parameter in the calibrated and uncalibrated algorithms for various values of Vc.

Comparison of the results of Δf_{decay} and Δf_{cali} measurements with the cavity detuning value obtained in the steady state. Measurement block diagram based on the network analyzer.

Measurement block diagram based on the network analyzer.

- the new calibrated value of $f_{0.5,cali}$ was not independent of Δf_{cali} at different V_c levels (see Fig. (f)).
- The deviation between $f_{0.5,scan}$ and $f_{0.5,cali}$ was maintained roughly within $\pm 2\%$, indicating that the proposed calibration algorithm accurately estimated the values of $f_{0.5}$