

Progress in LLRF system development for Korea-4GSR

1

Yong-Seok Lee **Pohang Accelerator Laboratory**

Oct. 24, 2023

OCTOBER 22-27, 2023 N GYEONGJU, REPUBLIC OF KOREA

LLRF2023 workshop

4GSR project background

Multipurpose Synchrotron Radiation Construction Project

- Period: 2021 July to 2027 June (6yrs)
- Budget: 1.0454 Trillion KRW (≈ USD 750M)
- Land: 540,000 m² / Building: 69,400 m²
- Location: Ochang, Chungcheongbuk-do

Project Timeline

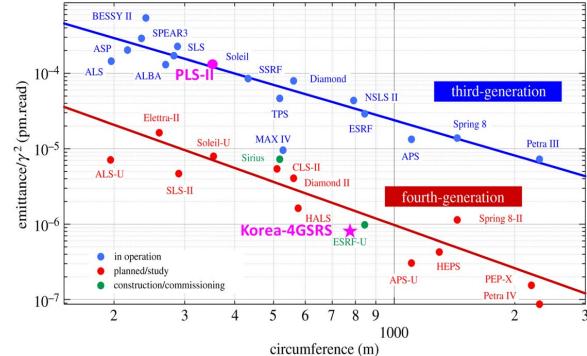
4GSR Project Budget Plan

Years	2021	2022	2023	2024	2025	2026	2027	Sum
Machine	8	44	77	172	180	97	28	606
Site	72	72	-	-	-	-	-	144
Sum	80	116	77	172	180	97	28	750

(Million USD)

Korea 4GSR

4GSR project background

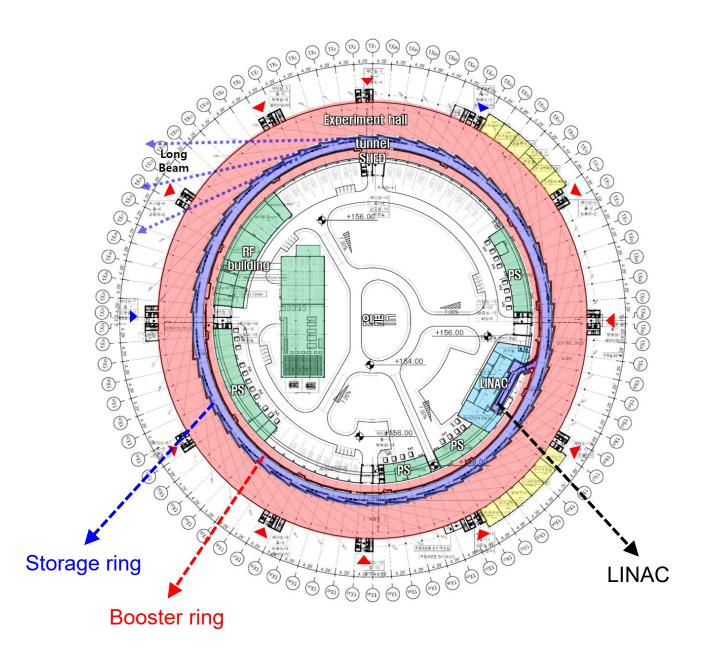

Specifications

- Korea-4GSR is to be a 4th generation storage ring based light source •
- The beam energy of this facility is 4 GeV, and the beam emittance is 58 pm rad with the beam current of 400 mA. ٠
- 4GSR aims to reduce the emittance by more than 100 times compared to 3GSR by further increasing the number of dipole ulletmagnets installed in one storage ring cell.

Deveryoter	Value	es	llnit	
Parameter	PLS-II	4GSR	Unit	
Beam energy	3	4	GeV	
Beam average current	400	400	mA	
Straight sections - No.	12	28	-	
Straight sections - length	3.7 / 6.8 long	6.5	m	
Ring circumference	281.8	798.8	m	
Emittance	5,800	58	pm rad	
Harmonic number	470	1332	-	
Bunch length (ps) (with H.C)	20	53.4	ps	
Injection	Full energy Linac	Booster Ring	-	

Comparison of parameters of PLS-II and 4GSR

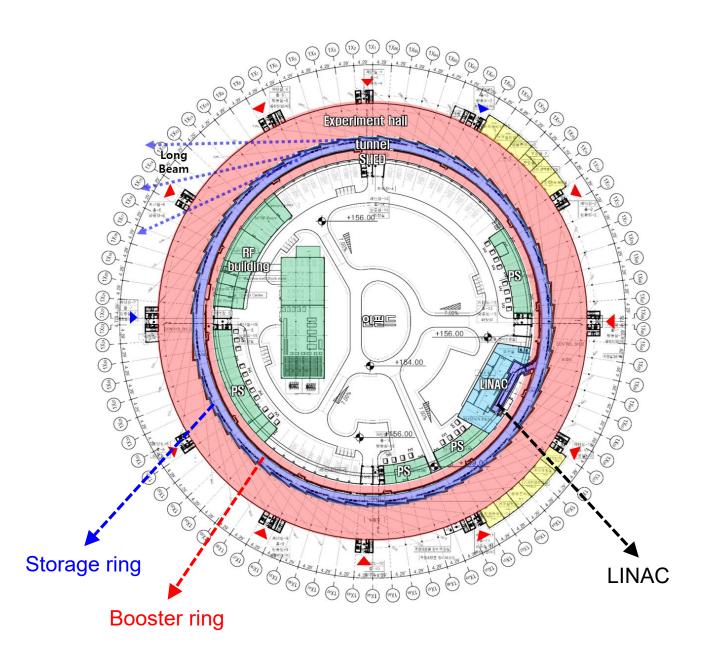
Emittance vs Circumference


4GSR project background

- The project structure combines the two entities of Pohang Accelerator Laboratory (PAL) as well es Korea Basic Science Institute ٠ (KBSI).
- Exclusive charge taskforce inaugurated for the success of the project \rightarrow PAL expert's participation for construction of accelerator • and beamline

Affiliation	Specialty	Job share rate (%)	Remark
PAL - 1	RF physics	30	Storage ring
PAL - 2	LLRF & RF Control	30	Storage ring
PAL - 3	Automation & Diagnosis	30	Storage ring
PAL - 4	System integration, Layout	30	Storage ring
PAL - 5	HPRF & Transmission	30	Storage ring
PAL - 6	Cooling & Vacuum	30	Storage ring
4GSR	Cavity & RF physics	100	Storage ring & booster
4GSR	System integration	100	Storage ring & booster

Overview of RF parameter (Storage ring)



RF parameters for storage ring

Parameter	Values
RF frequency [MHz]	499.593469
Energy [GeV]	4.0
Current [mA]	400
Circumference [m]	799.297
Revolution frequency [MHz]	3.7507
Harmonic number	1332
Electron energy loss/turn (KeV)	1877.65
Beam loss power by synchrotron radiation [kW]	751.06
Accelerating Voltage [MV]	3.5

Overview of RF parameter (Booster ring)

RF parameters for Booster ring

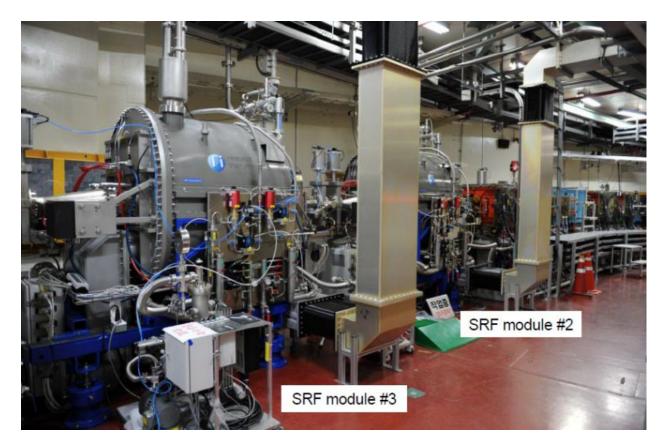
Parameter	Values
RF frequency [MHz]	499.594
Energy [GeV]	0.2 - 4.0
Current (single/multi) [mA]	1/3
Circumference [m]	0.3
Revolution frequency [MHz]	387.9
Harmonic number	1288
repetition rate [Hz]	2
Energy loss per turn @ 4.0 GeV [MeV]	1.671
Accelerating Voltage @ 0.2 GeV [MV]	0.3
Accelerating Voltage @ 4.0 GeV [MV]	3.0

Choice of storage ring cavity

Cavities in other accelerators for storage ring

Light Source	Cavity Type	Energy	Frequency	Circumference	Current	Cavity type (#)	RF power [kW]	Accelerating voltage (/cavity) [MV]	Energy loss/turn [MeV]
ESRF-EBS	NC	6.0	352	844.4	200	EU-HOM (13)	79	6 (500 kV)	2.56
APS-U	NC	6.0	352	1104	200	EU-HOM (12)	82.7	5.53 (535 kV)	6.57
PETRA-IV	NC	6.0	500	2304	200	EU-HOM (24)	110	8 (333 kV)	4.02
Diamond-II	NC	3.5	500	561.6	300	EU-HOM (8)	73	2.7 (338 kV)	
SLS-II	NC	2.4	500	290	400	EU-HOM (3)	114.9	1.4 (450 kV)	0.688
HEPS	SC	6.0	166	1295	200	SC (4)	150	3.5 (1200 kV)	2.5
NSLS-II	SC	3.0	500	158.4	400	SC (4)	270	4.8 (1200 kV)	~ 2.0
SIRIUS	SC	3.0	500	518.4	350	SC (2)	240	3.0 (1500 kV)	0.873 (bend & ID)
SSRF	SC	3.5	500	180	240	SC (3)	-	4.6 (1800 kV)	1.44
NSRRC	SC	3.0	500	496.8	300	SC (2)	440	3.2 (1600 kV)	1.58
ALBA	NC	3.0	500	400	400	NC (6)	150	3.6 (600 kV)	1.3

• 4th generation light source using the normal conducting, almost use the EU-HOM damped cavity model.


OCTOBER 22-27, 2023 In gyeongju, republic of korea

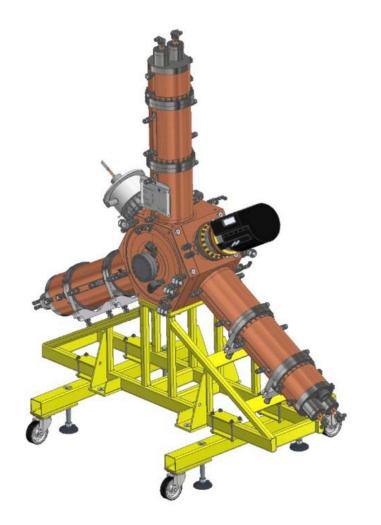
Choice of storage ring cavity (S.C vs N.C)

- Superconducting cavity has the advantages in respect to HOM characteristics. ٠
- PLS-II has operated 3 superconducting cavity from 2011 ٠

CESR-B SC cavity (PLS-II)

Normal cavity

For the simpler operation, easier maintenance and reparability of cavity we have chosen a normal conducting cavity for 4GSR ٠ project


OCTOBER 22-27, 2023 IN GYEONGJU, REPUBLIC OF KOREA

Cavity choice for storage ring

10 EU-HOM damped cavities for the storage ring to generate the total accelerating voltage of 3.5 MV and to compensate the ٠ beam energy loss

EU-HOM damped Cavity (RI)

Parameter	Values	
Accelerating voltage [MV]	3.5	
Number of cavity	10	
Optimal Coupling beta	4.5	
Required accelerating voltage per cavity [MV/cav]	0.35	Corres
Wall loss power per cavity [kW/cav]	18.01	
Beam loading power per cavity [kW/cav]	75.11	
Power loss at HOM absorber [kW/cav]	5	
Required power to coupler per cavity [kW/cav]	98.57	Max po
Transmission line loss per cavity [kW/cav]	10	circulat
Required output power of HPRF [kW/cav]	108.57	
Rated power of HPRF [kW/cav]	150	abt. 73

Remark

spond to 1.2 MV/m

ower of coupler : 120 kW

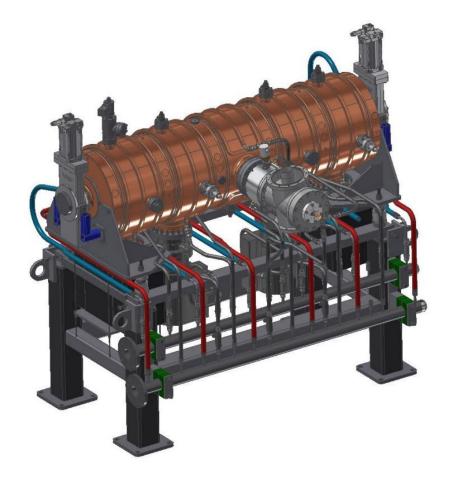
ator, waveguide, etc.

3% of RF source rated power

Choice of booster ring cavity

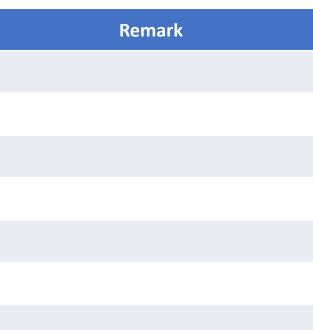
Cavities in other accelerators for storage ring

Light Source	Energy [GeV]	Freq. [MHz]	Circumference [m]	Rep. rate [Hz]	Cavity type (#)	Total Gap Voltage [MV]	Gap Voltage / Cavity [MV]
ESRF-EBS	0.20 → 6.0	352	298	4	5 cell LEP (4)	9.00	2.25
APS-U	0.45 → 6.0	352	368	2	5 cell LEP (4)	8.30	2.07
PETRA-IV	0.45 → 6.0	500	316.8	2 ~ 5	5 cell PETRA (9)	12.0	1.33
Diamond-II	0.10 → 3.5	500	163.8	5	5 cell PETRA (2)	2.00	1.00
SLS-II	0.10 → 2.4	500	270	3	ELETTRA (4)	2.60	0.65
HEPS	0.50 → 6.0	500	454	2	5 cell PETRA (6)	8.00	1.33
NSLS-II	0.20 → 3.0	500	158.4	1	7 cell PETRA (1)	1.20	1.20
SIRIUS	0.15 → 3.0	500	496.8	2	5 cell PETRA (1)	1.05	1.05
SSRF	0.10 → 3.5	500	180	2	5 cell PETRA (2)	1.74	0.87
TPS	0.15 → 3.0	500	496.8	3	5 cell PETRA (1)	1.20	1.20
BESSY-II	0.05 → 1.9	500	96	10	5 cell PETRA (1)	-	-
ALBA	0.10 → 3.0	500	249.6	3	5 cell PETRA (1)	1.00	1.00


- Multi-cell cavities are more efficient in reducing the footprint and cost than single-cell cavities, many accelerators multi-cells, especially 5-cell cavities, are used for booster ring.
- In the booster ring, the beam current is lower than that of storage rings, affect of HOM is not critical.

OCTOBER 22-27, 2023 In gyeongju, republic of korea

Cavity choice for Booster ring


5-cell normal conducting cavity of PETRA type has chosen in consideration of cost, space saving and field tuning. •

Petra-IV 5 cell cavity (RI)

Parameter	Values	
Accelerating voltage [MV]	3.5	
Number of cavity	3	
Optimal Coupling beta	~ 1.02	
Required accelerating voltage per cavity [MV/cav]	1.17	
Wall loss power per cavity [kW/cav]	45.37	
Beam loading power per cavity [kW/cav]	1.05	
Required power to coupler per cavity [kW/cav]	46.42	
Transmission line loss per cavity [kW/cav]	9.6	ci
Required output power of HPRF [kW/cav]	56.02	
Rated power of HPRF [kW/cav]	80	a

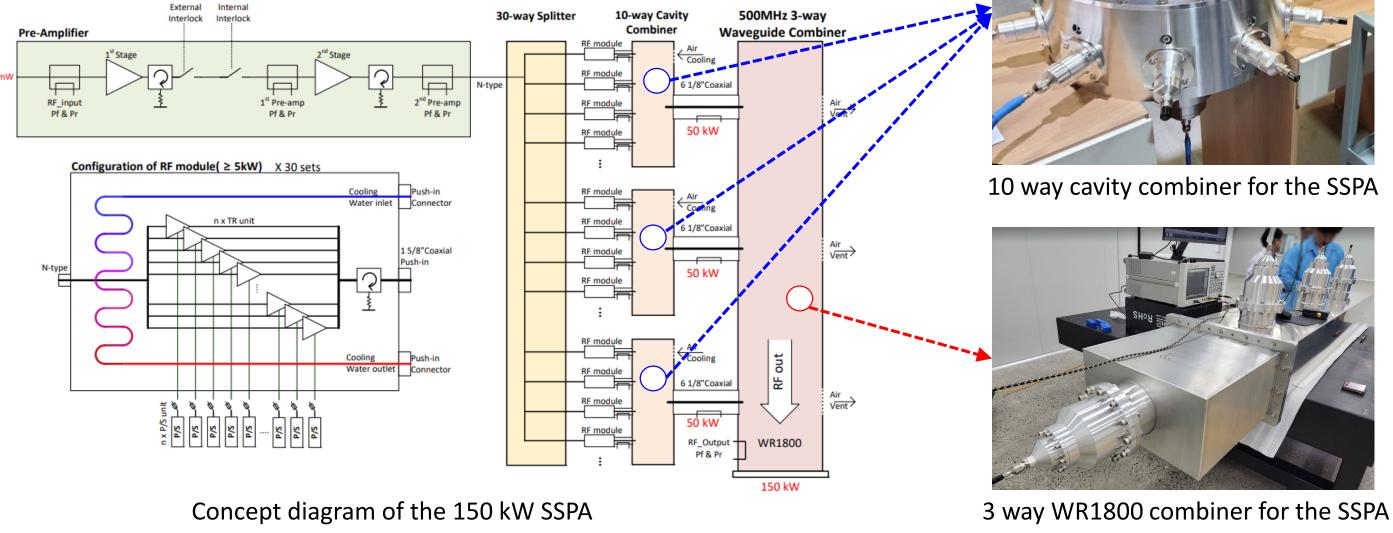
OCTOBER 22-27, 2023 IN GYEONGJU, REPUBLIC OF KOREA

circulator, waveguide, etc.

abt. 70% of RF source rated power

High power RF system

Comparison between Klystron and SSPA Based on 150kW


Comparison	Klystron	SSPA(Solid State Power Amplifi
	Fig. 500 MHz, 300kW cw Klystron at Pohang Light Source –II	RF input ssA reg 256 x 600 W ssA reg 256 x 600 W reg 250 x 600 W reg
Advantage	 Less space Long lifetime(>50,000hrs) Many references 	 Lower price (Abt. 95% of Klystron) Higher operability (Operation with faults) Easy maintenance by modularity Lower phase noise(Abt68dBc) Easier to upgrade in future No additional shielding for High Voltage and X-rational shie
Dis-advantage	 High price (increasing annually) Whole replacement is required at Fault Declining Industries High Voltage Protection required X-ray Shielding required PWM Ripple(Abt50dBc) 	 More space is required Less references

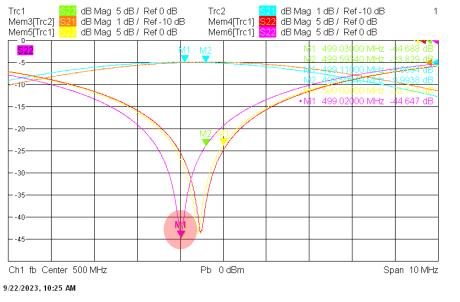
fier)
r combiner x.m
xanguut So kiiW
Power Supply C power converter
mple
ay required

Solid state amplifier

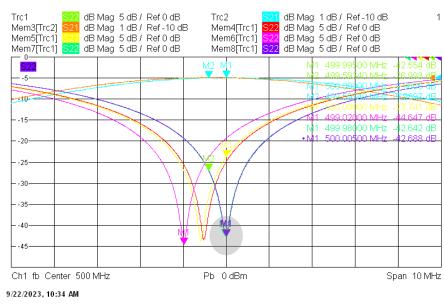
- 1st stage : 3 of 10 way cavity combiner (tested RL 42 dB) ۲
- 2nd stage : 1 of 3 way WR1800 WG combiner (tested RL 39 dB) ۲
- Final stage : Prototype 150kW SSPA package ۲

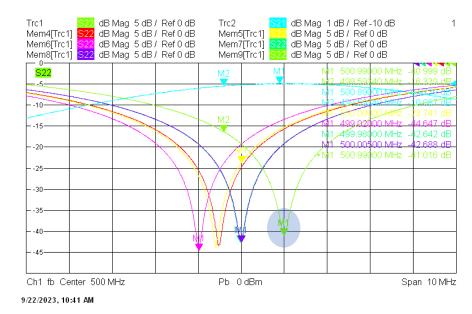

OCTOBER 22-27, 2023 IN GYEONGJU, REPUBLIC OF KOREA


Exhibition booth : RFHIC

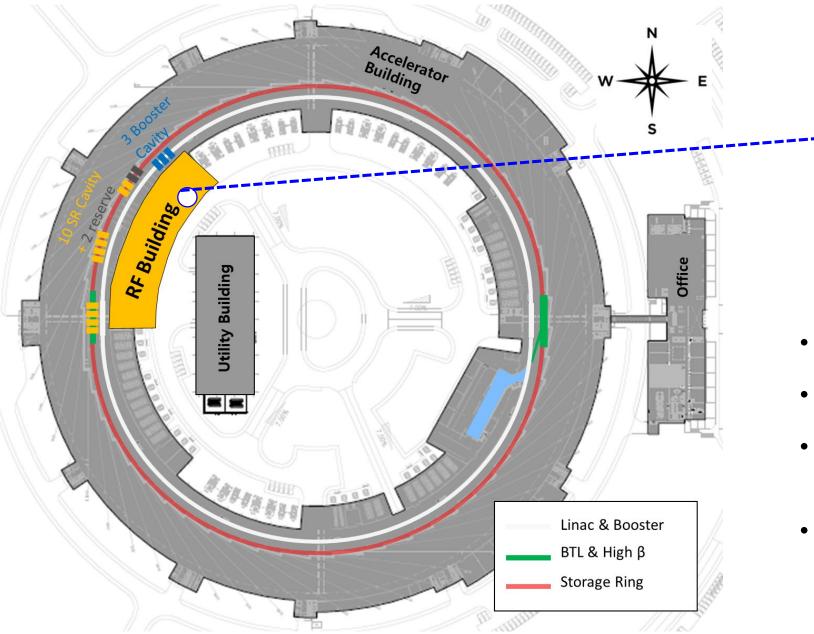


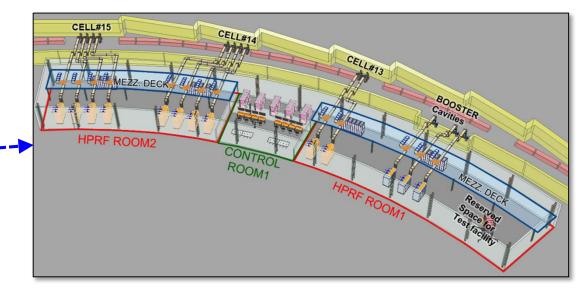
Solid state amplifier (10 way cavity combiner)





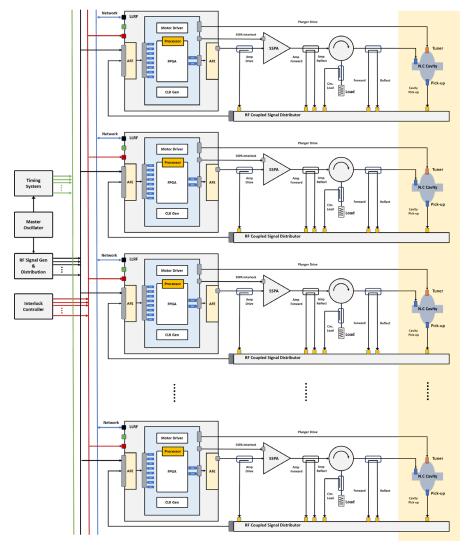
499.02 MHz / -44.647 dBm

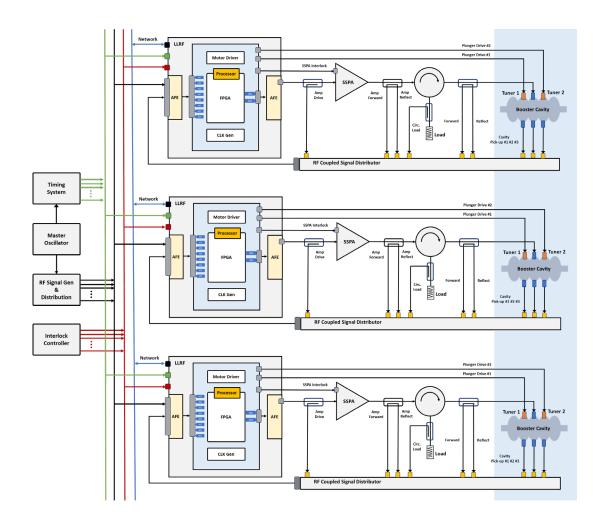

500.005 MHz / -42.688 dBm 14


Exhibition booth : RFHIC

500.99 MHz / -41.016 dBm

layout of 4GSR facility

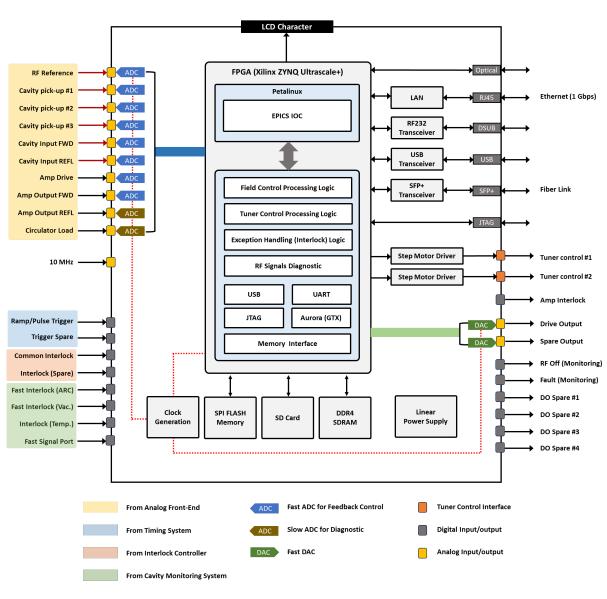



- Storage ring has total 10 of EU-HOM damped cavities.
- Booster ring has total 3 Petra- IV 5cell cavities
- Total 4 straight sections will be required for 10 main cavities and 3 booster cavities.
- To place RF devices, including booster cavities, in one RF building, three booster cavities were placed adjacent to the storage ring cavities.

Overview of LLRF system

- Each cavity is supplied by each SSPA and it is controlled by each LLRF system (individual control) ۲
- Traditional down/up conversion scheme is selected (IF : 50 MHz) ٠
- Share the same hardware platform and common application firmware •

Schematic diagram of RF system for booster ring


Requirements for stability

- The general expectation is that the amplitude of beam jitters should be less than 10 % of the bunch length

	L _b : beam bunch length f _o : RF cavity frequency	Paramete	Parameter		
$2\pi f_0 L_1$		RF frequency [MHz]	f	499.593469	
$\phi_{\rm b} = \frac{2\pi f_0 L_{\rm b}}{c}$		Bunch length [m]	L _b	0.004079	
-	c : light speed	Light speed	С	299792458	
		Phase tolerance	radian	0.004	
			deg.	0.244	
$\frac{\Delta V_c}{\Delta V_c} = \frac{\sin \phi}{\Delta \phi}$	a · Synchronous phase	Paramet	er	Value	
$\frac{v}{V_c} = \frac{1}{\cos\phi} \Delta\phi$	ø : Synchronous phase	Amplitude tolerance	%	0.271	

- The performance targets of the LLRF system for RF amplitude and phase are within 0.1% and 0.1°, respectively
- To keep the phase stability less than 0.244° and the RF voltage tolerance less than 0.27%.

Low Level RF system hardware design

Configuration of prototype digital board

Primary specifications of LLRF

Classification	Parameter	Value
General specification	Operating frequency	500 MHz ± 1 MHz
	FPGA chip	Xilinx Zynq ultrascale+
	External trigger	2 inputs, rising/falling edge
RF Inputs	Number of channels	8 (fast) / 2 (slow)
	Channel-to-channel isolation	> 65 dB
	Full scale input level	10 dBm
	Spurious-free dynamic range	> 65 dB
	IF frequency	50 MHz
	LO frequency	450 MHz
	Fast ADC clock	40 MHz (250 MSPS max.)
	Amplitude dynamic range	≥ 25 dB
	Amplitude resolution	< 0.01%
	Amplitude stability	< 0.1 % (upper 10 dB range)
	Phase resolution	< 0.01°
	Phase stability	< 0.1° (upper 10 dB range)
RF outputs	Output channel No.	2
	Full scale drive	10 dBm Max.
Feedback processing	Direct loop delay	< 1000 ns
	Control scheme	CW / Pulse / Ramping
Interlocks	Number of digital input	> 20
	Number of digital output	> 20

Digital component selection and specifications

* ADC (AD9653)

- Resolution : 16 bits
- Sample rate : 125 MSPS
- SNR : 76.5 dB SNR = $10\log_{10} (P_s/P_N)$
- Latency : 100 ns (estimated)
- Aperture jitter : 135 fs
- Total jitter : 476 fs
- External clock jitter should be less than 456 fs

* DAC (AD9783)

- Resolution : 16 bits
- Sample rate : 500 MSPS
- SPURIOUS FREE DYNAMIC RANGE (SFDR) : 68 dBc

 $SFDR = 10log_{10} (P_s/P_H)$

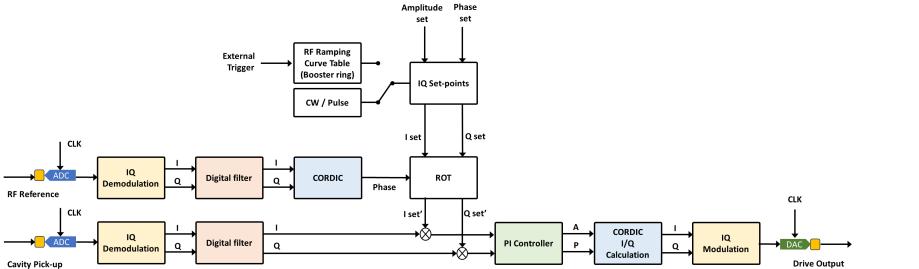
Clock generation (LMK04828)

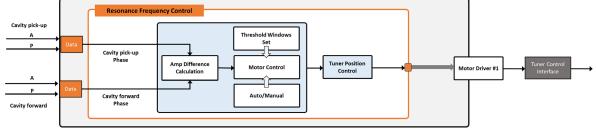
- Clock jitter < 90 fs

FPGA (ZU9EG)

Zynq® UltraScale+™ MPSoCs: EG Devices

	Device Name ⁽¹⁾	ZU1EG	ZU2EG	ZU3EG	ZU3TEG	ZU4EG	ZU5EG	ZU6EG	ZU7EG	ZU9EG	ZU11EG	ZU15EG	ZU17EG	ZU19EG
Application	Processor Core						ore Arm® Co	rtex®-A53 I	MPCore™ up	to 1.5GHz				
Processor Unit	Memory w/ECC				L1	Cache 32KB	I / D per core	e, L2 Cache	1MB, on-ch	ip Memory 2	256KB			
Real-Time	Processor Core					Dual-o	ore Arm Cor	tex-R5F MI	Core™ up t	600MHz		1.		
Processor Unit	Memory w/ECC	Memory w/ECC L1 Cache 32KB I / D per core, Tightly Coupled Memory 128KB per core												
Graphic & Video	Graphics Processing Unit		Mali [™] -400 MP2 up to 667MHz					XILINX®						
Acceleration	Memory L2 Cache 64KB		КВ			ZYNQ®								
	Dynamic Memory Interface				x16: D	DR4 w/o ECO	; x32/x64: D	DR4, LPDD	R4, DDR3, <mark>D</mark>	DR3L, LPDDF	R3 w/ ECC		UltraScale+™	
External Memory	MAND, 2x Quad-SPI													
C	High-Speed Connectivity				PCIe [®] G	en2 x4, 2x U	SB3.0, SATA	3.1, Displa	Port, 4x Tri-	-mode Gigab	it Ethernet			
Connectivity	General Connectivity				2xUSB	2.0, 2x SD/S	DIO, 2x UAR	T, 2x CAN	2.0B, 2x 12 <mark>C</mark>	, 2x SPI, 4x	32b GPIO			
	Power Management					I	ull / Low / P	L / Battery	Power Dom	ains				
Integrated Block	Security		RSA, AES, and SHA											
Functionality	AMS - System Monitor					10-bit	1MSPS – Te	mperature	and Voltage	Monitor				
to PL Interface							1	2 x 32/64/	128b AXI Po	orts				
2	System Logic Cells (K)	81	103	154	157	192	256	469	504	600	653	747	926	1,143
Programmable Functionality	CLB Flip-Flops (K)	74	94	141	144	176	234	429	461	548	597	682	847	1,045
Functionality	CLB LUTs (K)	37	47	71	72	88	117	215	230	274	299	341	423	523
	Max. Distributed RAM (Mb)	1.0	1.2	1.8	2.1	2.6	3.5	6.9	6.2	8.8	9.1	11.3	8.0	9.8
Memory	Total Block RAM (Mb)	3.8	5.3	7.6	5.1	4.5	5.1	25.1	11.0	32.1	21.1	26.2	28.0	34.6
	UltraRAM (Mb)	-	-	-	14.0	13.5	18.0	-	27.0	-	22.5	31.5	28.7	36.0
Clocking	Clock Management Tiles (CMTs)	3	3	3	1	4	4	4	8	4	8	4	11	11
Integrated IP	DSP Slices	216	240	360	576	728	1,248	1,973	1,728	2,520	2,928	3,528	1,590	1,968
	PCI Express®	-	-	-	1x Gen3x8	2x Gen3x8 ⁽²⁾	2x Gen3x8 ⁽²⁾	-	1x Gen3x16 & 1x Gen3x8 ⁽¹⁾	-	2x Gen3x16 & 2x Gen3x8 ⁽³⁾	-	3x Gen3x16 & 1x Gen3x8 ⁽³⁾	3x Gen3x16 & 2x Gen3x8 ⁽³⁾
	150G Interlaken		-		-				-		1		2	4
	100G Ethernet MAC/PCS w/RS-FEC		-		-	-	-	-	-	-	2	-	2	4
	AMS - System Monitor	1	1	1	2	1	1	1	1	1	1	1	1	1
	GTH 16.3Gb/s Transceivers	-	-	-	8	16	16	24	24	24	32	24	44	44
Transceivers	GTY 32.75Gb/s Transceivers		-	-	-	-	-	-	-	-	16	-	28	28
Course Courses	Extended ⁽⁴⁾		-1 -	2 -2L			-1 -2 -	2L-3				-1 -2 -2L -3	}	
Speed Grades	Industrial							-1 -1L -2						





Firmware of LLRF system

- The LLRF system use common digital signal processing method (IQ sampling, digital filter, CORDIC and PI control)
- The control mode of LLRF is divided into Pulse, CW, ramping mode
- The detune angle is calculated by calculating the phase difference between the forward and pick-up signals, and when the detune angle becomes larger than the set control range, the tuner operates so that it can resonate within the tolerance range.

Digital feedback control for amplitude/phase control loop

Digital feedback control for tuning loop

Tuning & Flatness loop for booster ring cavity

- It requires flatness control loop to keep the balance of the electric field distribution inside each cavity cell •
- Petra 5 cell cavity has two plunger at cell 2 and cell 4 and three pick-up port for frequency tuning and field flatness control ٠
- Tuning control and flatness control are accomplished by control the plunger positions •

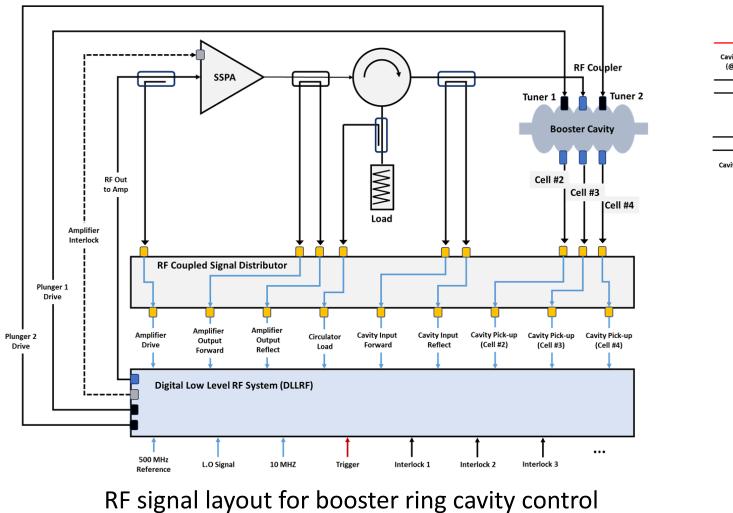
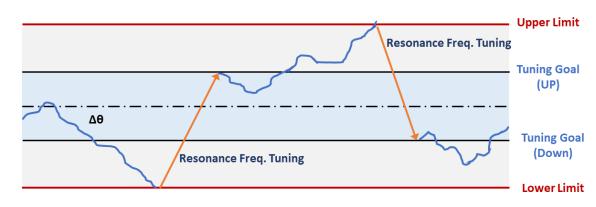



Diagram for tuning loop control

Tuning control scheme

Flatness control loop for booster ring cavity

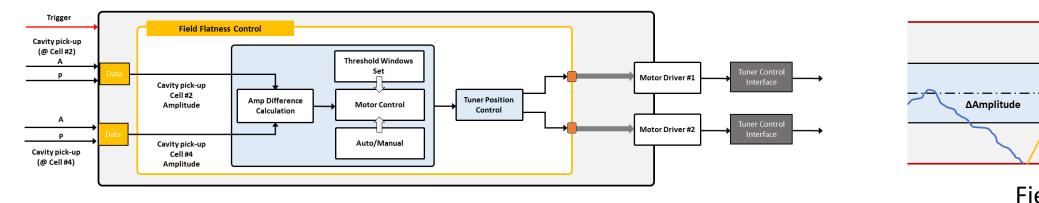
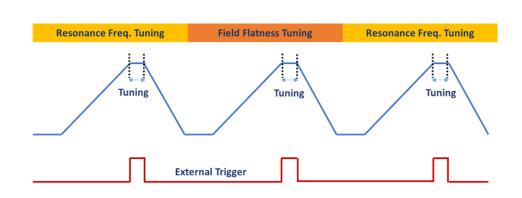
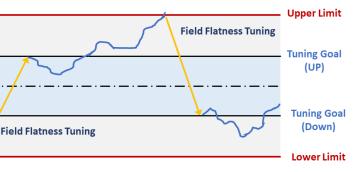




Diagram for field flatness control

- Two plunger move to opposite direction ٠
- The tuning loop and field flatness loop control are only active when the RF • acceleration voltage is in top-up mode
- The tuning loop control and field flatness control loops are synchronized to ٠ an external trigger and performed alternately

Field flatness control scheme

Process of tuning control and flatness control

Future plan for prototype of LLRF system

2856 MHz LLRF system for PLS-II LINAC

81.25 MHz LLRF system for RAON

OCTOBER 22-27, 2023 In gyeongju, republic of korea

Exhibition booth : Neolinx

Digital system based on RF SOC for astronomy applications

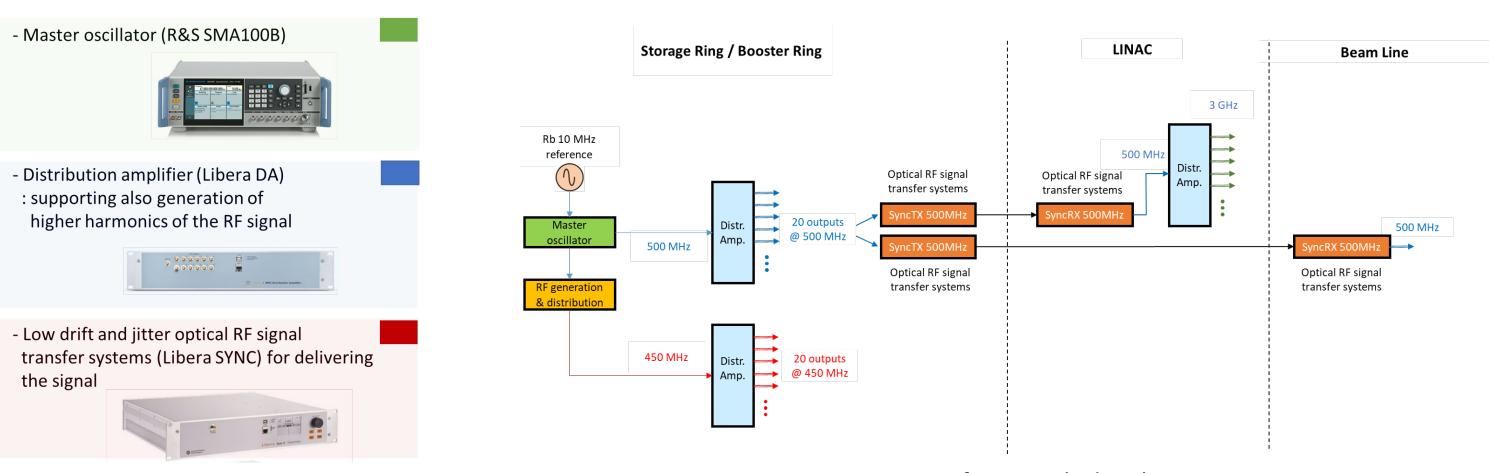


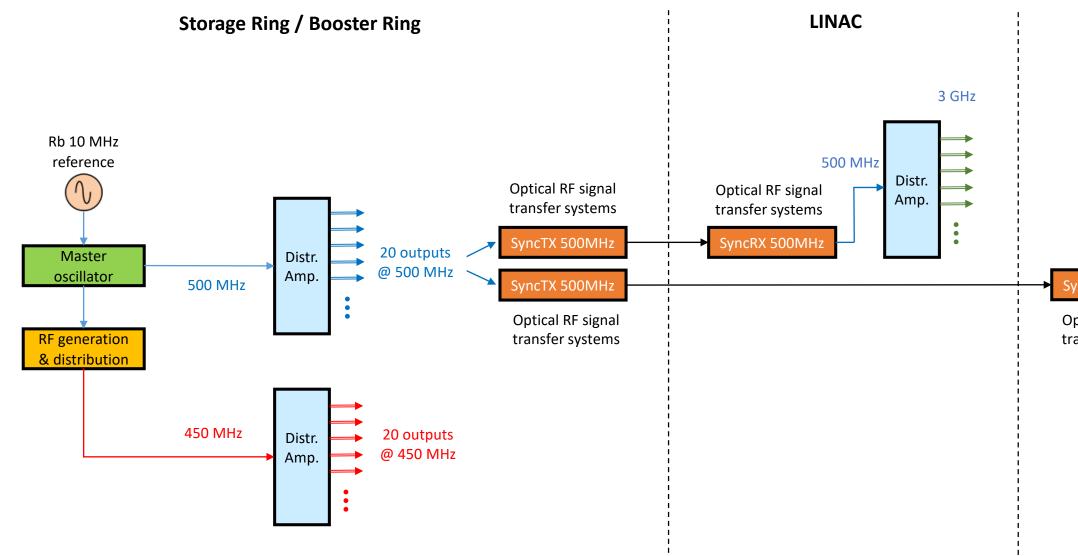
Diagram of RF signals distribution

OCTOBER 22-27, 2023 In gyeongju, republic of korea

Exhibition booth : Rohde&Schwarz

Exhibition booth : Instrumentation Technologies

Thank you for your attention!


High power RF system

	Number of cavity	8	10	
Cavity	Required power to coupler [kW/unit] (case of single cavity failure)	127.07 (145.22)	98.57 (109.52)	
	Reflect power [kW/unit]	0.042	0.448	
Transmission	Transmission line loss (Pt/unit)	10	10	
SSPA	Output power of HPRF [kW/unit] (Case of single cavity failure)	137.07 (156.65)	108.57 (120.66)	
	Rated power of SSPA [kW/unit]	190	150	

12
80.73
(88.07)
0.629
10
90.73
(98.98)
130

Storage ring RF cavity

Concept diagram of the 150 kW SSPA

OCTOBER 22-27, 2023 In gyeongju, republic of korea

Exhibition booth : Rohde&Schwarz

Exhibition booth : Instrumentation Technologies

Beam Line

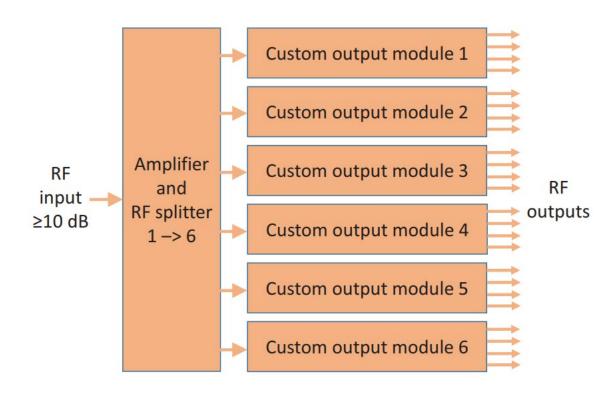
SyncRX 500MHz Optical RF signal transfer systems

- Master oscillator (R&S SMA100B)

RF output:

- 500 ± 1 MHz will be used in 4GSR
- from 8 kHz MHz to 3 GHz
- remotely configurable
- 15 dBm, 50 Ω

1


- integrated phase noise (jitter) from 10 kHz to 5 MHz: <18.7 fs RMS

Ethernet interface, EPICS IOC available

- Distribution amplifier (Libera DA)

· The States III / RMO Distribution Amplifier

- It can be customized in terms of number of RF outputs

- The freq. of the outputs can be divided or multiplied from the provided input freq.

RF input:

- 500 MHz
- 15 dBm

RF outputs:

- Modular arhitecture supports up to 24 RF outputs at different harmonics of the input frequency:
- x1 : 500 MHz (for Booster, Storagerig, Timing system,...) x6 : 3000 MHz (for LINAC)
- Other multiplication and/or division factors are also possible.
- 15-18 dBm

1

Integrated added jitted from 10 Hz to 10 MHz: <5 fs RMS

- Low drift and jitter optical RF signal transfer systems (Libera SYNC)

Features

- RF reference signal that modulates an optical carrier through an electrooptical modulator. The modulated signal is fed into the optical links

- At the receiver, the optical signals are demodulated into the RF domain. The low-jitter signal is amplified, filtered, and stabilized in amplitude and phase

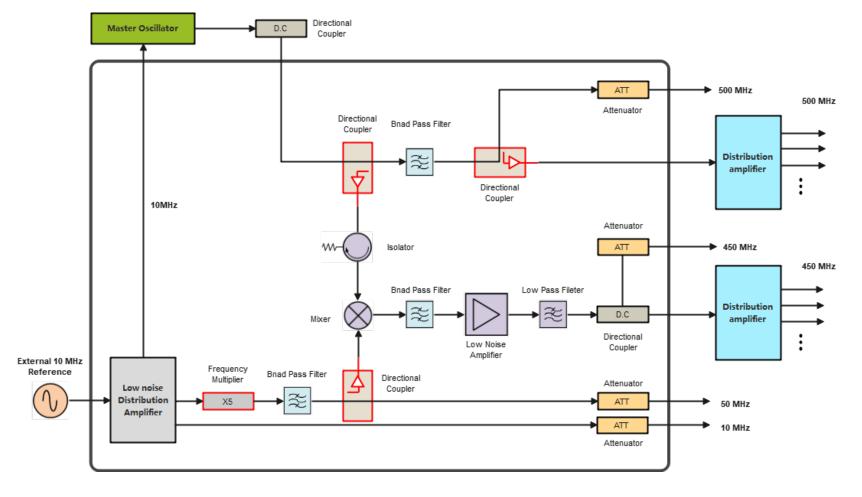
- This signal is used to provide two RF outputs and one monitoring output

RF input

- 500 MHz
- 15 dBm

RF outputs

- 15-18 dBm


1

- Integrated added jitted from 10 Hz to 10 MHz : <300 fs RMS
- Maximal optical link length : 1500 m

RF and LO generation chassis

- 1st stage : 3 of 10 way cavity combiner (tested RL 42 dB)
- 2nd stage : 1 of 3 way WR1800 WG combiner(tested RL 39 dB) ٠
- Final stage : Prototype 150kW SSPA package ٠

Concept diagram of the 150 kW SSPA

Concept diagram of the 150 kW SSPA