Overview of 4GSR Multipurpose Synchrotron Radiation Construction Project

Ko, In Soo **Project Director**

Oct. 13, 2022

4GSR Outline

Multipurpose Synchrotron Radiation Construction Project

- Period: 2021 July to 2027 June (6yrs)
- Budget: 1.0454 Trillion KRW (≈ USD 750M)
- Land: 540,000 m² / Building: 69,400 m²
- Location: Ochang, Chungcheongbuk-do

Specifications

- Beam Energy: 4 GeV
- Beam Emittance: less than 100 pm·rad (CDR: 58 pm·rad)
- Circumference: 800m
- Beamlines : more than 40
- Accelerator: Gun, Injector LINAC, 4 GeV Booster
- Lattice: MBA-7 Bend Achromat

<4GSR Project Budget Plan>

Years	2021	2022	2023	2024	2025	2026	2027	Sum
Machine	8	44	77	172	180	97	28	606
Site	72	72	-	-	-	-	-	144
Sum	80	116	77	172	180	97	28	750

(Million USD)

POHANG ACCELERATOR LABORATORY

20	21	2022	2023	2024	2025	2026	20
		Multi	purpose Synchro	otron Radiation	Construction Pro	oject	
CDR	DR TDR			Δ	ccelerator & Be	amlines	
		Site Construc	tion	Buildiı	ng & Facility Cor	nstruction	

Project Governance

4

PAL POHANG ACCELERATOR LABORATORY

Manpower

		2022	2023	2024	2025	2026	2027
Director		1	1	1	1	1	1
	Vice Director	1	1	1	1	1	1
KDCI	Accelerator System	4	6	11	14	26	37
KBSI	Infrastructure & Facility	9	15	15	15	15	15
	Project Management	10	18	19	19	19	19
		24	40	46	49	61	72
	Accelerator	85	92	105	109	117	117
PAL	Beamlines	67	72	79	85	87	87
	Project Management	23	25	26	26	25	23
		175	189	210	220	229	227
Total		200	230	257	270	291	300

Main Parameter BTS **Storage Ring** Booster LTB Buncher 기계공조/전기

General Parameter	
Energy / GeV	
Symmetry / Sub-Symmetry	
Straight Sections: No & Length / m	
Ring Circumference / m	
# Dipole Magnets	
Nat. Emittance / prad m	
regular hor/ver @ coupling	
Diffraction limited source for	
Energy spread	
Bunch Length s _t / ps	
RF Parameter & Others	
RF frequency / MHz	
# cavities / total Voltage	
# buckets: total / gap	
Harmonic RF system	
Average current / mA	
Lifetime / h	
Top up operation	
Injection scheme	
Beam pipe (in achrom.) / mm ²	
Magnets:	
max. bending magnet field / T	
max. quadrupole grad. T/m	
max. sextupole strength T/m ²	

6

POHANG ACCELERATOR LABORATORY

4.0 28 28 / 6.5 798.8 28 * 7 = 196 58 55 / 6 @ 10 % I > 1.7 / 0.365 nm 1.20E-3 10.68 (without HC) / 53.40 (with HC)

499.877

3 x nc / 3.5 MV (1.8 MV max) 1332 / 267 3rd, passive,sc, 800 kV 400 4.54 (flat) / 8.81 (round) yes 4 Kicker bump D: 24(H)*20(V) @ Straight Section 1.7 56

1844

KS 한국기초과학지원연구원 KOREA BASIC SCIENCE INSTITUTE

Injector

Booster

- Same tunnel with SR. 1.
- Enough dynamic aperture: (Ax: -27 ~ 27 mm, Ay: ~ 14 mm). 2.
- Two normal cavities in one straight section. 3.

Linac

- Thermionic DC gun (Y-845). 1.
- 500 MHz sub-harmonic pre-buncher for multi-bunch. 2.
- 3. 2.997 GHz (Pre) buncher and 6 accelerator tanks

4GSR Linac	Multi-bunch	Single-bunch	
Energy	<u>200</u>	<u>200</u>	MeV
Frequency (e-gun and SHB)	499.546	499.546	MHz
Frequency (Accelerator)	2997.28	2997.28	MHz
Emittance (at 200 MeV)	≤ <u>200</u>	≤ <u>200</u>	nm
Relative energy spread (rms)	≤ 1	≤ <u>0.5</u>	%
Pulse to pulse energy variation	≤ <u>0.25</u>	≤ <u>0.25</u>	%
Pulse to pulse beam position	≤ <u>0.20</u>	≤ <u>0.20</u>	mm
Pulse to pulse jitter	≤ <u>100</u>	≤ <u>100</u>	ps
Pulse charge	3 to 10	0.01 to 2.5	nC
Pulse duration	<u>100</u> to <u>400</u>	≤ <u>1</u>	ns
Repetition rate	<u>2</u>	<u>2</u>	Hz

	QD	QD	
	4GSR Booster	Value	Unit
	Cell Number	50	-
Design	Length	756.86	[m]
Parameters	Electron Energy	0.2 - 4	[GeV]
	Natural Emittance	6906	[pm rad]
	Horizontal Tune	19.208	-
	Vertical Tune	9.268	-
Tune and	Natural Horizontal Chromaticity	-35.146	-
Chromaticiy	Natural Vertical Chromaticity	-14.617	-
	Horizontal Chromaticity	-2	(target)
	Vertical Chromaticity	-2	(target)

Beam Injection

- Well demonstrated scheme will be used. 1.
- Baseline: conventional four kickers injection. 2. - Dynamic aperture: (Ax: $-10 \approx 10$ mm).
- Including advanced scheme: NLK. 3.

Septum S1

0.7 (m)

0.5(m)

9

Septum S2

0.7 (m)

Septum S3

0.7 (m)

0.5(m)

POHANG ACCELERATOR LABORATORY

Solid-state switch test in PLS-II

1st 4GSR International Advisory Committee Meeting – 2022 Oct 13

Magnet System

- 1. Korea-4GSR needs 980 demanding magnets.
- 2. Center bend features 2T field, and Permendur is adopted for the pole.
- 3. Longitudinal Dipole used staggered independent coils, and reluctance gap in the return yoke to follow the design field.
- Quadrupole, Dipole Quad magnet achieved 60 T/m gradient using tapered pole, without using expensive Permendur.
- 5. Sextupole is not so demanding but requires noninterfering H/V/SQ windings.

Magnet	Required Number	Remark	
Central BM	28	1*28	
Long. BM	112	4*28	
Reverse Bend	336	2*3*28 (should have B, B')	
Quad Bend	56	2*28 (should have B, B')	
Quadrupoles	336	6*2*28	
Sextupoles	168	6*28 (should have B", H/V Corr, Skew Quad)	
Fast Corr.	112	4*28 (H/V combined corrector)	
Magnets/Sec	35	31+4 (fast Corr.)	
Total	980	Total number of magnets	

Magnet Power Supply

- PS configuration with modular structure for easy and fast recovery from fault. 1.
- PS connection option: Individual or grouping (series) for high power unipolar PS. 2.

Quantity	1,228
MPS Type	Unipolar
Input Voltage	380VAC 3phase
Max. Current	120 A
Max. Voltage	40 V
Max. Power	4.8 kW
Accuracy	TBD
Repeatability	10 ppm
Reproducibility	100 ppm
Ripple and Noise	10 ppm
Long-term Stability (8h)	10 ppm
Temperature Stability	5ppm / K
Line Regulation	±10 ppm
Load Regulation	±10 ppm
Setting Resolution	>18 bit
Readback Resolution	>18 bit
Parallel Operation up to	4

Quantity	840
MPS Type	Bipolar
Input Voltage	220VAC 1phase
Max. Current	15 A
Max. Voltage	5 V
Max. Power	75 W
Accuracy	TBD
Repeatability	10 ppm
Reproducibility	100 ppm
Ripple and Noise	50 ppm
Long-term Stability (8h)	100 ppm
Temperature Stability	5ppm / K
Line Regulation	±10 ppm
Load Regulation	±10 ppm
Setting Resolution	18 bit
Readback Resolution	18 bit

Specification of Slow MPS

Quantity	112
MPS Type	Bipolar
Input Voltage	220VAC 1phase
Max. Current	5 A
Max. Voltage	20 V
Max. Power	100 W
Accuracy	TBD
Repeatability	10 ppm
Reproducibility	100 ppm
Ripple and Noise	50 ppm
Short-term Stability (30min)	10 ppm
Temperature Stability	5ppm / K
Line Regulation	±10 ppm
Load Regulation	±10 ppm
Setting Resolution	20 bit
Readback Resolution	24 bit
Small Signal Bandwidth	10 kHz

Specification of Power Module for High Power MPS

Modular structure

Specification of Fast MPS

SR Vacuum Chamber

- Beam chamber cross section is octagon shape (24 mm (H) x 18 mm (V)) except for center bend.
- Vertical aperture of the center bend chamber is 10 mm.
- Eight RF-bellows are used for installation and to reduce stress.
- Two gate valves are located at the end of the arc section.
- Seven sputter ion pumps are installed for noble gas pumping.
- The clearance between the vacuum chamber and the magnets is larger than 0.6 mm.

✓ Clearance

Two Major Changes from CDR

Electron Gun at Linac

>> Thermionic DC Gun						
Subject	Single bunch mode	Multi-bunch mode				
Beam energy	100 kV	100 kV				
Charge	0.01~2.5 nC	3~5 nC				
Pulse length	≤1 ns	100~400 ns				
Repetition rate	2 Hz	2 Hz				

>> Photocathode RF Gun					
Subject	Single bunch mode	Multi-bunc			
Beam energy	4 MeV	4 Me			
Charge	0.01~1 nC	1~3 ı			
Pulse length	<20 ps	200 ns (100			
Repetition rate	2 Hz	2 H			

* PAL-XFEL has sufficient experience with Photocathode RF Gun

***** RF System for SR

ch mode

eν

nC

0 pulses)

.

Two Major Changes from CDR

Comparison

Cavity Type	SRF (CDR)	Normal RF [*] (Euro Design)	Rem
Required RF voltage [MV]	3.5	3.5	
Required beam power [kW]	720	720	
Shunt impedance [M-Ω]	89,000.0	3.4	
Required power / coupler[kW]	240.0	90	
Wall loss power / cavity [kW]	0.008	18	
Beam Loading Power / cavity	240	72	
Required gap voltage/cavity [kV]	1,166.7	350	
# of cavity	3	10	
# of Klystron	3	10	
Total klystron output power [kW]	864.0	1,080.2	Applied 20% op
AC power for klystron [kW]	1,885.2	2,700.4	RF conversion
Unit Klystron power (kW)	288.0	108	
Total cavity cooling load	700 W @4.5K	180 kW	SRF: He Refriger
Compressor cooling load, SC [kW]	300.0	-	
HPRF cooling power [kW]	754.1	3,240.5	Total loss + 20% d

narks	,
-------	---

perational margin

on rate: 40%

rator / NRF: LCW

operational margin

Beamlines

POHANG ACCELERATOR LABORATORY

Construction Site

4GSR Design – Building Design Company (Haenglim*)

Korea Photon Light Source

계획의 전제

과학기술 기초역량 강화를 위한 세계 최고 수준의 차세대 다목적 방사광 가속기 구축 선도적 원천기술 및 미래핵심기술 확보를 위한 R&D 과학기술 인프라의 요람. 차세대 첨단기술의 집약적 활용으로 국가 기술경쟁력 강화에 기여.

* Designed PAL-XFEL

4GSR Design – Building Cross-session

19

단계별 인필드 배수 계획 수립

한국기초과학지원연구원 KOREA BASIC SCIENCE INSTITUTE

POHANG ACCELERATOR LABORATORY

 한국기초과학지원연구원

 KOREA BASIC SCIENCE INSTITUTE

4GSR Design – Floor Plan 1 연구동 배치 2 실험홀 롱빔 확장부지 저장링 외곽 4곳 균등배치 실험 분야별 4개존으로 구성 개발실 기능별 연계가 가능한 조님 향후 빔라인 확장을 위한 벽체계획 3 가속기 터널 4 초전도고주파동 저장링동 4개의 균등 배치 1 터널 미로구조 출입구 계획 효율적인 냉각수 공급을 위한 터널 안쪽 유지관리 점검공간 설치 압축기실 및 액체질소,헬륨탱크 인접배치 5 인필드 MPS랙 터널 81 818 855 305 창의마딩 롱빔 확장구간 중앙 외부측량을 위한 기준점 설정 원활한 배수가 가능한 도로구배 실험홀 기초 부둥침하 방지를 범라인 확장명역 위한 치환공법 적용 가속기 터널 MPS랲 연락설비통 MER SURPLY RF통 장치 테스트실 공조기계동 부스터 및 저장립내 초전도 전자석에 고주파 공급 광학마당 3치 개발실 1 2 POWER AHU 1 추가 개발연구공간 JPPLY ·장치 개발실 향후 빔라인 40기 확장 연구 및 개발공간으로 활용 4 E al 압축기실 효율적인 관리 운영을 위한 4개의 조닝, 4개의 균등배치 5 인필드 전력설비 공조기계통 **중앙기계동** 전기실/공조실(메인 /펌프실 등 (Di water 설비) (녕각수 설비) 1018 T 외부측량기준점 외부 측량점 계획 3 시설연계를 고려한 본부동 --가속기동 동선계획 실험을 전비 19500 만남성 ◀ +155.00 저수조 우수조 (지하) 155.00 임의의 장치를 특정공간의 원하는 지점에 T 전력설비동 위치시키기 위해 특정 공간에 대한 측량 좌표를 정의하고 물리적인 좌표축을 설정 연결통로 가속기동 본부동 기계나 s 진공조립실 s Class class Battan Battan Haran Kanada Ka 방문객전용 코어 폐기물 임시보관소 방사화 위험이 높은 관람데크 입사/인출구역에 인접배기 3층 머신샵 관람을 실험홀 1 2층 홂 터널 공조기계통 포토마당 웰컴스페이스 13 🔷 컨퍼런스를 (mg 빔라인 확장구간 범과인 화장영역 빔라인 확장영역 향후 빔라인 확장을 고려한 공간구성 ·로비 – 전시홍보 – 가속기제어실로 이어지는 관림동선 계획 장비반입실 계획 빔라인 조닝별 4개소 균등배치 2톤 크레인 설치 AND DE COMMANDE |층 평면도 Scale 1/1,800 10 20 40 50

POHANG ACCELERATOR LABORATORY

21

Summary

Multipurpose Synchrotron Radiation Project

- The project aims to build 4 GeV storage ring with an emittance less than 100 pm
- Its circumference will be 800m
- It can host more than 40 beamlines. Initially, 10 beamlines will be ready.

***** 2 Institutions working together

- KBSI: Leading institution in charge of Building and Facility
- PAL: Partner institution in charge of Accelerator and Beamlines

Construction will be completed by 2027

- Building design began in September, 2022 and will be completed by 2023
- TDR will be finished by 2023
- Construction will be started in spring, 2024

