2022 ATE accelerator school

Synchrotron X-ray Nanoscopy Studies of Nanoscale Materials

Chosun University Department of Materials Science and Engineering Prof. Hyon Chol Kang

. . .

포항가속기 연구소, 과학관1층 대강당 2022.08.08~2022.08.12

Collaborators

Brian Stephenson, R. Conley, C. Liu, A. T. Macrander, and J. Maser (ANL, USA)

H. Yan, and Yong S. Chu (BNL, USA)

- C. Kim, Y. Kim, and D. Y. Noh (GIST)
- S. Y. Lee and S. S. Kim (PAL)
- S. Y. Cha, S. J. Kim, and W. Jeong (Chosun Univ)

Supported by

National Research Foundation (NRF) through Science Research Center(SRC) program for Center for Advanced X-ray Science (C-AXS)

Chosun University through Faculties Research Fund Program

Issues in Science

3

원자(분자)-전자-스핀 수준에서 물질의 이해

"정적/통계적" 🗰 "동역학적/개별적" 🖄 <u>'Time Scale</u>'

4

Molecular imaging with fs x-ray pulse

Potential for biomolecular imaging with femtosecond X-ray pulses

Richard Neutze*, Remco Wouts*, David van der Spoel*, Edgar Weckert†‡ & Janos Hajdu*

Nature 406, 752 (2000)

Diffraction pattern

Ultra fast : Time of x-rays pulses \rightarrow X-ray Free Electron Laser Ultra small : Spatial resolution of x-rays \rightarrow X-ray focusing optics

Ultimate Light Source (X-rays)

2010년대 : Ultimate X-선 광원

- <u>X-ray Free Electron Lasers (XFEL)</u>
- Ultimate Storage Ring (USR)

완벽한 Spatial Coherency (XFEL, USR) 극한의 Bright (FLUX) (XFEL, USR) 극도로 Short (PULSE) (XFEL)

X-ray Free Electron Laser

X-ray Pulse Repe 2011

SPrin

PAL-XFEI 2017

X-ray energy range: 0.3 ~ 20 keV Pulse width: > 10 fs Repetition rate: 60 Hz

X-ray probes

8

List of Nobel laureates (X-ray research)

When What	Who	Why	Field of rese	
when what			arch	
1901 Physics	Wilhelm Conrad Röntgen	"in recognition of the extraordinary services he has r endered by the discovery of the remarkable rays subs equently named after him"	associated with cry stallography	discovers X-r ays
1905Physics	Philipp Eduard Anton von Le nard	"for his work on cathode rays"		
1914Physics	Max von Laue	"for his discovery of the diffraction of X-rays by cry stals"	associated with cry stallography	
1915Physics	Sir William Henry Bragg an d William Lawrence Bragg	"for their services in the analysis of crystal structure by means of X-rays"	associated with cry stallography	extend the use of X-ray diffr action as a tec hnique for det ermining crys tal structure
1917Physics	<u>Charles Glover Barkla</u>	"for his discovery of the characteristic Röntgen radia tion of the elements"	associated with cry stallography	
1924Physics	Karl Manne Georg Siegbahn	"for his discoveries and research in the field of X-ray spectroscopy"		
1927Physics	Arthur Holly Compton	"for his discovery of the effect named after him"		
1936Chemistry	<u>Petrus (Peter) Josephus Wilh</u> <u>elmus Debye</u>	"for his contributions to our knowledge of molecular structure through his investigations on dipole momen ts and on the diffraction of X-rays and electrons in ga ses"	associated with cry stallography	
1936Physics	Victor Franz Hess	"for his discovery of cosmic radiation"		
Physiology 1946or Medicin e	Hermann Joseph Muller	"for the discovery of the production of mutations by means of X-ray irradiation"		

List of Nobel laureates (X-ray research)

When What	Who	Why	Field of research	
1958Physics	Pavel Alekseyevich Cherenkov , Il'ja Mikhailovich Frank an d Igor Yevgenyevich Tamm	"for the discovery and the interpretation of the Cher enkov effect"		
1961 Physics	Rudolf Ludwig Mössbauer	"for his researches concerning the resonance absorp tion of gamma radiation and his discovery in this co nnection of the effect which bears his name"		
1962Chemistry	Max Ferdinand Perutz and Joh n Cowdery Kendrew	"for their studies of the structures of globular proteins"	associated with crystallogr aphy	
Physiology 1962or Medicin e	Francis Harry Compton Crick , James Dewey Watson and Ma urice Hugh Frederick Wilkins	"for their discoveries concerning the molecular stru cture of nucleic acids and its significance for inform ation transfer in living material"		
1964Chemistry	Dorothy Crowfoot Hodgkin	"for her determinations by X-ray techniques of the s tructures of important biochemical substances" incl uding Vitamin B12	associated with crystallogr aphy	
1972Chemistry	<u>Christian B. Anfinsen</u>	"for his work on ribonuclease, especially concernin g the connection between the amino acid sequence a nd the biologically active conformation"	associated with crystallogr aphy	
1972Chemistry	Stanford Moore and William H . Stein	"for their contribution to the understanding of the contribution between chemical structure and catalytic a ctivity of the active centre of the ribonuclease mole cule")	
1976Chemistry	<u>William N. Lipscomb</u>	"for his studies on the structure of boranes illuminat ing problems of chemical bonding"	associated with crystallogr aphy	

List of Nobel laureates (X-ray research)

When	What	Who	Why	Field of rese	
				arch	
1979	Physiology or Medicin e	Allan M. Cormack and Godfre y N. Hounsfield	"for the development of computer assisted tomograp hy"		
1981	Physics	<u>Kai M. Siegbahn</u>	"for his contribution to the development of high-reso lution electron spectroscopy"		
1985	Chemistry	Herbert A. Hauptman and Jero me Karle	"for their outstanding achievements in the developm ent of direct methods for the determination of crystal structures"	associated with cry stallography	
1988	SChemistry	Johann Deisenhofer, Robert H uber and Hartmut Michel	"for the determination of the three-dimensional struct ure of a photosynthetic reaction centre"	associated with cry stallography	
1997	Chemistry	Paul D. Boyer and John E. Wal ker	"for their elucidation of the enzymatic mechanism un derlying the synthesis of adenosine triphosphate (AT P)"		for his work on the struct ure of Bovin e F1 ATP sy nthase
2003	Chemistry	Peter Agre and Roderick Mack innon	"for discoveries concerning channels in cell membra nes"	associated with cry stallography	
2009	Chemistry	Venkatraman Ramakrishnan, T homas A Steitz and Ada E Yon ath	"for studies of the structure and function of the ribos ome"	associated with cry stallography	
2011	Chemistry	Dan Shechtman	"for the discovery of quasicrystals"	associated with cry stallography	
2012	Chemistry	Robert J. Lefkowitz and Brian K. Kobilka	"for studies of G-protein-coupled receptors"	associated with cry stallography	

The Fist Nobel laureate

Photo from the Nobel Foundation archive. Wilhelm Conrad Röntgen Prize share: 1/1

DER UNIVERSITÄT

 \checkmark X-rays can probe the properties of matter (atoms).

✓ Varies probing techniques have been invented and utilized.

→ Absorption, Transmission, Diffraction, Scattering, Reflection, Refraction

Synchrotron facility

Synchrotron X-ray beamline : End-station

PLS-II : Beamline map

🐉 포항가속기연구소 🕥 과학기술정보통신부

Synchrotron X-ray beamline : End-station

C-AXS

Micro-probe

Micro-probe for sub 1 μ m (200 ~ 500 nm) : high-throughput setup

- → Optics : K-B mirror
- → XRF, XES, Diffraction (6-circle diffractometer or scanner on optical table)

Nano-probe for sub 50 nm (push to resolution limit of sub 10 nm)

 \rightarrow Optics : K-B mirror, FZP, (option : Multilayer Laue lens)

→ Ptychographic X-ray CT, 2D nano-XANES, 3D-XRF (all nano-stage on granite table) CENTER FOR ADVANCED X-RAY SCIENCE 17

X-rays interact with matter (atoms)

- ✓ Multi-modal hard X-ray nano-probe (energy : ~8 keV, <25 keV)</p>
- ✓ Current Resolution : < 20 nm in 2D, 40 nm in 3D
- ✓ In-situ capability : working distance, field-of-view, depth-of-focus
- ✓ Optics : K-B mirror, CRL, Fresnel zone plate, Multilayer Laue Lens

CENTER FOR ADVANCED X-RAY SCIENCE

X-ray Nano-focusing Optics

19

X-ray Focusing Optics

If optics with large NA and low aberrations can be produced Can x-rays be focused down to the near atomic scale ?

Currently Resolution ~ $100 \times \lambda$

Questions :

i) Where is the fundamental limit using real materials?

ii) Can we fabricate optics that should reach the fundamental limit?

X-ray Microscopy

Full-Field Transmission Mode

 \rightarrow Resolution of microscopy can be determined by the performance of the focusing optics.

Coherent X-ray Diffractive Imaging (CDI)

- Lessless Imaging technique by phase recovery
- Algorithm : Phase recovery → Coherent X-ray Diffractive Imaging (CDI)

C-AXS

Compound Refractive Lens (CRL)

Compound Refractive Lens (CRL)

A. Snigirev et al. Nature (1996)
150 μm→ 8 μm

(a) nanofocusing refractive lenses

50 x 50 nm² @ 21 keV, ESRF C. G. Schroer et al. APL, 87, 124103 (2006)

CENTER FOR ADVANCED X-RAY SCIENCE

Materials : Be, Diamond, Si Limited by weak refraction → Low efficiency

LETTERS PUBLISHED ONLINE: 22 NOVEMBER 2009 | DOI: 10.1038/NPHYS1457 nature physics

Breaking the 10 nm barrier in hard-X-ray focusing

Hidekazu Mimura^{1*}, Soichiro Handa¹, Takashi Kimura¹, Hirokatsu Yumoto², Daisuke Yamakawa¹, Hikaru Yokoyama¹, Satoshi Matsuyama¹, Kouji Inagaki¹, Kazuya Yamamura³, Yasuhisa Sano¹, Kenji Tamasaku⁴, Yoshinori Nishino⁴, Makina Yabashi⁴, Tetsuya Ishikawa⁴ and Kazuto Yamauchi^{1,3}

Nature Physics, 6, 122 (2010) → Spring-8 Nature Photonics, 7, 43 (2013) → SACLA

Osaka University

7 nm (1D), 20 x 20 nm² (2D)

 \rightarrow Wave-front correction method

Diffractive optics with high NA

Small focal spot sizes require small zone widths.

- Zone plate structures for hard x-rays must be several microns thick to achieve high efficiency, which implies high aspect ratios (>>100).
- It is difficult to produce such high aspect ratio structures using lithography.
- Sectioning of multilayers allows very high aspect ratios to be produced.

https://cxro.lbl.gov https://zoneplate.lbl.gov

Fresnel Zone Plate

Impact of Fresnel Zone Plate for soft x-rays

Soft X-ray microscopy at a spatial resolution better than 15 nm

Nature **435**,1210 (2005)

Weilun Chao^{1,2}, Bruce D. Harteneck¹, J. Alexander Liddle¹, Erik H. Anderson¹ & David T. Attwood^{1,2}

Multilayer Laue Lens

27

Deposition + Sectioning + Assembling

(1) Deposit multilayer with depth-graded spacing to form zones of linear zone plate (thinnest structures first!)

(2) Make cross-sections to allow use in Laue geometry (high aspect ratio structure)

(3) Assemble sections at right angles to form point focus(High efficiency)

Dynamic diffraction effect (volume effect)

MLL is no longer optically "thin", i. e., geometrical theory fails.

H. C. Kang et al., Phys. Rev. Lett. 96, 127401 (2006).
H. F. Yan, H. C. Kang et al., Phys. Rev. B 76, 115438 (2007).

CENTER FOR ADVANCED X-RAY SCIENCE

H. C. Kang et al. Physical Review Letters, 96 127401 (2006) H. C. Kang et al. Applied Physics Letters, (2008) 醬) 나노물성 실험실, 조선대학교 CENTER FOR ADVANCED X-RAY SCIENCE

Advanced Photon Source

Advanced Photon Source, Argonne National Laboratory

3rd generation synchrotron : undulator

7 GeV

CENTER FOR ADVANCED X-RAY SCIENCE

16 nm hard x-ray nano-beam

Section depth = 14.9 μ m, Δr_{min} = 5 nm, f = 2.6 mm @ APS 26ID

CENTER FOR ADVANCED X-RAY SCIENCE

Future Direction : Ultimate Limit

Curved Ideal MLL

Θ $l_i \rightarrow$ I_o

CENTER FOR ADVANCED X-RAY SCIENCE

Isophotes near the focus

FWHM = 0.21 nm

It's ideal case !!!!!!

Scanning Fluorescence X-ray Microscopy with MLL (2-D focus)

- Two MLLs were crossed to make 2-D point focus.
- Special instrumentation is required to align MLLs accurately.
- (alignment of nano-beam and nano-sample)
- Utilization and user supporting program at NSLS-II

CENTER FOR ADVANCED X-RAY SCIENCE

Multi-modal X-ray nano-probe

- ✓ Multi-modal hard X-ray nano-probe (energy : ~8 keV, <25 keV)
- ✓ Current Resolution : < 20 nm in 2D, 40 nm in 3D
- ✓ In-situ capability : working distance, field-of-view, depth-of-focus
- ✓ Optics : K-B mirror, Fresnel zone plate, Multilayer Laue Lens
Fluorescence x-ray image of test patterns

37

나노물성 실험실, 조선대학교

Imaging resolution : Siemens star pattern

C-AXS

Scientific Applications

Fluorescence x-ray microscopy of PtNi nano-crystal catalyst

Element mapping of Solid Oxide Fuel Cell

Pt-Ni nano-crystal catalysts

(a) SEM image of array of Pt-Ni nano-crystals. (b),(c) SEM image and model of great rhombicubooctahedron. (d),(e) SEM image and model of small rhombicubooctahedron.

Pt-Ni nano-crystal catalyst is an emerging material for the energy related applications. 100 times higher chemical reaction activity than Pt nano-crystal catalyst.

→ High temperature stability & oxidation CENTER FOR ADVANCED X-RAY SCIENCE

By thermal oxidation, the Pt-Ni alloy nano- crystal is oxidized.

→What is the chemical distribution in the skin ?
→ What kind of elements is prefer to react with oxygen ?

X-ray Diffraction Patterns

By oxidation, Pt(111) and NiO(111) Bragg peaks appeared, while $PtNi_3(111)$ peak disappeared completely.

EDX by SEM

Not sensitive for nano-scale materials Limitation by drifting and charging during the measurement

Fluorescence x-ray microscopy by MLL

H. C. Kang et al. Nanoscale, 2013, 5, 7184-7187

Pt-Ni nano-crystal catalysts

Fluorescence x-ray microscopy by MLLNi K α 1Pt L α 1

Pt-NiO Core/Shell Structure !!!!!!

ᆮᆼᆮᆷᆮ, ᆺᆮᇑᆧ교

Distribution of Ni in YSZ:Ni Solid Oxide Fuel Cell

SEM/EDS images

Sample is made by FIB process, and mounted on the SiN membrane.

Probing depth is limited to few ten nm.(skin sensitive)

X-ray fluorescence microscopy

Small feature is observed. → Nanometer scale pores

Differential Phase Contrast Imaging

- Far-field diffraction pattern is measured during scanning the sample across the x-ray nano-focus.
- Intensity variation can be used to reconstruct the DPC imaging

Differential Phase Contrast Imaging

Scientific Reports 3:1307 (2013)

> (20 nm focus & 20 nm step)

X-ray Microscope at Pohang Light Source

- 20 nm X-ray nano-beam @ 9C beamline
- X-ray nano-beam diffraction can be utilized.
- Mechanical stability is very important.

CENTER FOR ADVANCED X-RAY SCIENCE

Optic Express 18, 24975 (2010)

- J. Appl. Phys. 109, 044307 (2011)
- J. Synchrotron Rad. 18, 143 (2011)
- J. Synchrotron Rad. 22, 156 (2015)
- J. Synchrotron Rad. 22, 781 (2015)

X-ray Nano-CT at the PLS-II

X-ray nano-CT image of synthetic bone graft G-AXS

CENTER FOR ADVANCED X-RAY SCIENCE

54

圈 나노물성 실험실, 조선대학교

X-ray nano-CT image of synthetic bone graft G-AXS

X-ray nano-CT image of bone screw

PLA powder

PLA+HA bone-screw

PLA : polymer matrix HA : ceramic particles

Cryo-system is required !!!

Multimodal X-ray Nano-probe

- → MAX-IV의 NanoMax (스웨덴)
- → APS의 26-ID-C (미국)
- → NSLS-II의 3-ID (미국)
- → PETRA-III의 P06 (독일)
- → ESRF의 ID01 (프랑스)
- → DLS의 I14 (영국)
- → PETRA-III의 P23 (독일)

모든 방사광가속기에서 설치 운영 중 혹은 계획 중

NSLS-II, 3ID Nanoprobe beamline

FZP setup : 2D & 3D XRF and ptychography imaging, 2D nano-XANES imaging

- → Beam size : ~ 40 nm
- → Energy : 6~13 keV

Multilayer Laue lens setup : 2D & 3D XRF and ptychography imaging

→ Beam size : < 20 nm

Energy : 12~17 keV center for advanced X-ray science

APS, 26ID Nanoprobe beamline

- \rightarrow A single end-station
- → Scanning probe + STXM
- → Optics : Capillary condenser, only FZP
- \rightarrow Push to resolution limit

MAX IV, NanoMAX beamline

ESRF, ID16B Nanoprobe beamline

CENTER FOR ADVANCED X-RAY SCIENCE

Scientific Issues studied by multimodal X-ray nanoprobe

In-operando Electrochemical Cell

Nano-XANES

2

C-AXS

In-operando Semiconductor device

Multimodal X-ray probe at PLS-II

Multimodal X-ray probe station at 9C

J. Synchrotron Rad. 29,1114-1121 (2022)

The purpose of this apparatus is to measure coherent Xray diffraction, X-ray fluorescence and electrical properties simultaneously.

Multimodal X-ray probe station at 9C

In-situ annealing process of epitaxial ZnO/Sapphire(0001) thin films for studying the variation of electrical transport properties associated with strain relaxation.

Bragg Coherent Diffractive Imaging

-0.42	-0.39	-0.36	-0.33
1	1	1	1
-0.27	-0.24	-0.21	-0.18
1			
-0.12	-0.09	-0.06	-0.03
3	\$	٠	٠
		-	
+0.03	+0.06	+0.09	+0.12
		•	0
٥	•	۰	۰
+0.18	+0.21	+0.24	+0.27
19		•	
+0.33	+0.36	+0.39	+0.42
		٠	
	-0.42 -0.27 -0.12 +0.03 +0.18 +0.33	-0.42 -0.27 -0.27 -0.24 -0.12 -0.09 -0.12 +0.03 +0.06 -0.09 -0	-0.39 -0.36 -0.27 -0.24 -0.21 -0.12 -0.09 -0.06 $+0.03$ $+0.06$ $+0.09$ $+0.18$ $+0.21$ $+0.24$ $+0.33$ $+0.36$ $+0.39$ $+0.33$ $+0.36$ $+0.39$

We have developing the X-ray nanoprobe for studying the properties of materials comprehensively.

✤ X-ray nano-focusing optics is a key component to improve the imaging resolution.

✤ X-ray nanoprobe provides the great opportunities in nano-science.

✤ X-ray nano-CT is now feasible at the PLS-II.

The impact of Imaging that resolve nanometer scale objects is expected to be large on many areas of science.

감사합니다 !!!

COLUMN