2022 ATE accelerator school

Dongguk University Dept. Energy & Electrical Engineering Ph.D. Sae-Hoon Park

> 포항가속기 연구소, 과학관 1층 대강당 2022.08.08~2022.08.12

Uses for ion sources

lon source

» 입자가속기에서의 중요한 부품 (starting point)

- 물리실험, 산업공정, 의료적 활용에 이용
- 고에너지 입자빔을 활용하여 다양한 분야의 연구개발에 활용

Need for ion sources

- **⊡**lon source
 - » 이온을 생산하기 위해 원자를 이온화하는 장치
 - **»** Lorentz force
 - Electric field
 - ➤ acceleration

$$\vec{F} = qe(\vec{E} + \vec{v} \times \vec{B})$$

- Magnetic field
 - ➢ deflection
- 이온빔의 첫 번째 가속 (ion extraction)

Characterization of the ions

» 가장 기본적인 parameter

(^ E q+)_n

where, E=element, A=specific isotope

q=charge state, n=ionized atoms, ionized molecules

◙빔에너지

■입자 종류

» 이온원 인출 시스템에서 DC/RF 입자가속기로 공급

 $E_{kinetic,total} = qeU$

• ²⁰Ne⁵⁺ 100 kV 가속, 얻는 에너지는 500 keV

» kinetic energy per nucleaon

$$E_{kinetic,total} = \frac{E_{kinetic,total}}{A} = \frac{qeU}{A} = \frac{1}{2}m_uv^2 = (\gamma - 1)m_uc^2$$

Characterization of the ions

☑빔 전류

- C⁺ 이온인 경우 → ex) 1 mA = 6.24 × 10¹⁵ N/s
- C⁺ⁿ 이온인 경우 → ex) 1 mA = 6.24 × 10¹⁵ N/s /n
- C_m⁺ 이온인 경우 → ex) 1 mA = 6.24 × 10¹⁵ N/s × m

☑빔 파워

» 입자에너지 × 입자갯수 /초 = V_a × I_a [w]

- C⁺ 이온인 경우 → Va × (la × 6.24 × 10¹⁸ N/s) = Va × la
- C⁺ⁿ 이온인 경우 → (Va × n) × (la × 6.24 × 10¹⁸ N/s /n) = Va × la
- C_m⁺ 이온인 경우 → (Va / m) × (la × 6.24 × 10¹⁸ N/s × m) = Va × la

Generation of ions

፼ 전자

» 전자는 전자총(Electron gun), 이온은 이온원(Ion source)

» 플라즈마, 기체, 액체, 고체로부터 얻을 수 있음.

> 가장 간편한 방법은 고체 → 일반적으로 기체의 이온화 에너지 > 금속의 일함수

» 절연체는 아주 얇은 경우에만 사용 가능→표면의 +전하가 전자 방출을 방해

Generation of ions

- 가장 일반적인 방법은 금속 또는 반도체 표면에서 전자를 얻는 것
- 금속에 포함된 자유전자는 Fermi-Dirac 에너지 분포를 따름
- 재료가 가열되면 전자 에너지 붙포가 Fermi 분포로 옴겨짐

2022 ATE school

Generation of ions

- **⊡** Ionization mechanism
 - >>> 일함수(work function)를 극복하고 나오는 방법
 - ・ 열전자 방출 (Thermionic Emission) : 열
 - ・광전자 방출 (Photo Emission) : 광자
 - 장방출 (Field Emission) : 전기장
 - 이차전자 방출 (Secondary Electron Emission) : 이온 또는 원자

Generation of ions

☑ 열전자 방출

열전자방출이론에서의 방출전류밀 $\Phi = AT^n \exp(-\frac{W}{KT})$ n=2 @금속 n=1.25 @반도체

» 금속의 온도가 T이고, 외부에서 전하를 계속 공급한다면, 표면에서 방출될 수 있는 전자 전류는

$$j = \int ev_x \, dN = -\int_{E_f + W}^{\infty} \frac{4\pi e (2m)^{3/2}}{h^3} v_x \sqrt{E} \exp\left(-\frac{E - E_f}{kT}\right) dE = AT^2 \exp(-\frac{W}{kT})$$

- Richardson-Dushman equation
 - 온도를 높게 할 수록 일함수가 작은 금속일수록 많은 전자 전류를 얻을 수 있다.

Generation of ions

☑ 금속의 열전자 방출 특성

Element	φ(eV)	Element	φ <mark>(</mark> eV)	Element	φ(eV)
Ag	4.26	Cu	4.65	Si	4.85
Ag (100)	4.64	Cu(100)	4.59	Ru	4.71
Ag (110)	4.52	Cu(110)	4.48	Та	4.25
Ag (111)	4.74	Cu(111)	4.98	Ta (100)	4.15
Ba	2.52	lr (110)	5.42	Ta <mark>(110)</mark>	4.80
С	5.0	lr(111)	5.76	Ta (111)	4.00
Се	2.9	K	2.30	Ti	4.53
Cr	4.5	LaB ₆	2.66	W	4.55
Cs	2.14	Мо	4.60	Zr	4.05

Generation of ions

☑ 열전자 방출 – Multiple Ionzation

- singly-charged 이온화포텐셜에 3~4배 Te
- Xe2+ 이온화포텐셜 약 10 keV Te 약 60~80 eV

Generation of ions » 광자 에너지 > 일함수인 경우

 $h\nu > e\phi$

 $K_{max} = hf - W(\Phi)$

谢 광전자 방출

- 어떤 물질 내의 전자가 일함수이상의 광자 에너지를 흡수하면 빛이 방출됨
- · 광자의 에너지가 너무 낮으면 전자는 물질을 벗어날 수 없음
- •이온화포텐셜 5~15 eV, 1 eV 광자 파장 12,500 Å

Generation of ions

☑ 장방출

» 진공에서 고체(금속) 표면으로 외부에서 높은 전기장이 가해지는 경우

• 유한한 폭의 장벽으로 인해 터널링 발생

$$J = 6.2 \times 10^6 \frac{\left(\frac{\mu}{\phi}\right)^{1/2}}{\alpha^2(\phi + \mu)} E^2 \exp(-6.8 \times 10^7 \phi^{\frac{3}{2}} \alpha / E)$$

>> Flowler-Nordheim equation(tunnelling)

 $J = a\Phi^{-1}F^{2}\exp[-v(f)b\Phi^{3/2}/F]$

Ion Sources

☑ 이온원 종류 및 구조

» 이온원 구조 – 챔버/인출

Plasma source	Extractor	lon beam

» 이온원 종류

Ion Sources

☑ 전자 충돌 이온화 소스(Electron impact ionization sources)

>> 전자가 타겟 원자와 충돌>> 일함수, 캐소드 재료에 의해 결정됨

 $j = AT^2 \exp(-\frac{W}{KT})$ $A = \frac{4\pi e m_e k^2}{h^3}$ $\approx 1.2 \times 10^6 A m^{-2} K^{-2}$ Richardson-Dushman constant

Ion Sources

☑ 전자 충돌 이온화 소스(Electron impact ionization sources)

≫ 전자와 타겟 입자와의 이온화를 위한 단면적(cross-section)

$$\sigma n_{atom} = \frac{1}{L_{collision}}$$
$$\frac{dn_{ion}}{dt} = \frac{I\sigma n_{atom}L_{path}}{e}$$

n_{atom} 소스안에서의 타겟 입자 밀도 L_{collision} 이온화가 일어날 평균 이동 거리 L_{path} cathode – anode 거리 dn_{ion}/dt 단위 시간당 생성된 이온갯수

Ion Sources

☑ 플라즈마 방전 이온원(Plasma discharge ion source)

» 이온화도

Ion Sources

☑ 플라즈마 방전 이온원(Plasma discharge ion source)

≫ 파센커브(Paschen curve)

전극간 거리 d를 곱하여

$$V_b = E_f d \qquad V_b = F(p, d)$$
$$V_b = \frac{aPd}{\ln(Pd) + b}$$

상수 a, b = gas constant 압력 p와 전극 사이 d에 따라 γ 전극 물질에 따라 달라짐

Ion Sources

☑ 플라즈마 방전 이온원(Plasma discharge ion source)

» 쉬스(Sheath formation)

Ion Sources

☑ 플라즈마 방전 이온원(Plasma discharge ion source)

» Child-Langmuir 법칙

Irving Langmuir 방정식 1.전자는 전극 사이를 탄도적으로 이동 2.전극간 영역에서 모든 이온의 공간 전하는 무시 3.전자는 음극 표면에서 속도가 0 $j = \frac{I}{S} = \varepsilon_0 \frac{4}{9} \sqrt{\frac{2e}{m} \frac{V^{3/2}}{d^2}}$

최대 전류 밀도는 전압과 거리에 따라 계산

공간전하는 빔퍼비언스에 의해 의존

$$P = \frac{I}{V^{3/2}}$$

Ion Sources

☑ DC 방전 이온원

FEBIAD ion source

Ion Sources

☑ RF 방전 이온원

Extractor

-

 $E \approx \frac{\mu_0 \pi N_t I r f}{1 - 1}$

Ion Sources

☑ MW 방전 이온원

도파관으로 Microwave 전달 마이크로파 이온원 2.45 GHz

upper limit for the electron density in the plasma $n_{ep} \leq 1.11 \times 10^{10} f^2 cm^{-3}$ $n_{ep} = 6.66 \times 10^{10} f^2 cm^{-3}$ @2.45 GHz

Ion Sources

🧭 스퍼터링 이온원

SNICS (Model846B)

D⁻ 이온 single-step process로 형성 $D^+ + Ba^0 \rightarrow D^- + Ba^{2+}$

D·이온 two-step process로 형성 $D^+ + Cs^0 \rightarrow D^0 + Cs^+$ $D^0 + Cs^0 \rightarrow D^- + Cs^+$

Cs sputtering 이온원

Ion Sources

☑ 이온원 구조

ex) r=1cm 양성자 최대전류 밀도=100 A/m²

Reference

27

- "CRC handbook on Chemistry and Physics", version 2008.
- Ian G. Brown, "The Physics and Technology of Ion Sources", 2003.
- Huashun Zhang, "Ion Sources", 1999.
- Bernhard Wolf, "Handbook of Ion Sources", 1995.
- R. Scrivens, "Classification of Ion Sources", CERN accelerator school 2012.
- R. Scrivens, "Requirements for Ion Sources", CERN accelerator school 2012.
- R. Rejoub, B. G. Lindsay and R. F. Stebbings, Phys. Rev. A 65, 2002.
- Y. K. Kim and M. E. Rudd, Phys. Rev. A 50, 1994.
- K. Wiesemann, "A Short Introduction to Plasma Physics", CERN accelerator school 2012.
- 유광준, 이세연, 박일한, "Plasma sheath modeling of Dry etching process", 대한전기학회 하계학술대회 논문집, 2007.
- T. Kalvas, "Beam Extraction and Transport", CERN accelerator school 2012.

