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DALp BRSNS . . WS
- Magnetic scalar potentlal

Sometimes (-) sign is omitted for simplicity

/

V-B=0, VxB=0 — B=-Vu. V=0

 Field free (J = 0) vacuum region (u = uy):

* In the limit of a device long compared to its transverse dimensions:

: ' Lo [ ov 1 9%
VA aViv==-(pr |+ 575 =0

* The solution of the above equation are of a form that is well behaved on axis (by
separation of variables):

O

W = Z a, p" cos(no) + b, p" sin(ne)

n=1

- Be careful ! Index convention (n from 1 vs. n from 0) differs in Europe and US, and by authors
and textbooks
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Multipoles

e Forn=1:
Uy = aypcos(o) + bipsin(o) = a1 + by
—>  Equipotential surfaces form lines

Bl = —V"(!-';'l = — (f‘— RE I}{—> T_,."f-‘l = —(1'.-1."}..' — b]_:f}

VAR

Dipole
Skew dipole P

e Forn=2:
o = asp? cos(20) + bap? sin(20) = asx(x? — y*) + 2bsay
—>  Equipotential surfaces form hyperbolae
, 0 d\ ) . . .
By = Vi =—T— + 95— | o = 2a0(—x1 + yy) — 2b2(yx + xy)
du dy / N

uadrupole
Skew quadrupole Q P

Dipole and Skew dipole Quadrupole and Skew quadrupole
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Motion in quadrupole fields

Force due to quadrupole fields:
F. =qu.2 x By = —2qu.bs(yy — x)

 Meaning of the coefficient b,: Measure of field gradient

9B,

) B
—2?)2 - — h
dy

(0.0) - O

=B
(0.0)

« Transverse equations of motion for a momentum p,, assuming paraxial motion near the z-

axis:
2 I
d*r o Fo  2qu.box qB’ ,
2 v T Y T 2 Tt
dz? VMo Ymovg o
d*y = Fy —2qu.bay — 4 qbﬂ_.(
dz? ' Ymovd ymovd Po

* In standard oscillator form: ‘ ‘
" + h‘,(z):lf =0, 3" - h‘.é-y =0

 Here, the square wave number is sometimes known as the focusing strength:

o

g3’ B’

= =K
Po [B ﬂ]

x
Il
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Motion in quadrupole fields (cont’d)

« Fork,> > 0, one has simple harmonic oscillation in x (around x=0), and the motion iny is

hyperbolic.
Th : : .
x = xgcos [ko(z — 20)] + h—U sin [ko(z — 20)] with 2(z0) = xg, 2'(z0) = 2,
0
)’ 1 .
y = yocosh [ko(z — z0)] + h—o sinh [ko(z — 20). with y(z0) = yo. ¥'(20) = ¥
0

« For k> <0, the motion is simple harmonic(oscillatory) in y, and hyperbolic(unbounded) in x.

* Focusing with quadrupoles alone can only be accomplished in one transverse direction at a
time. Ways of circumventing this apparent limitation in achieving transverse stability, by use
of alternating gradient (AG) focusing.

X - L e L=

I

S N S N P

horizontal ver‘tlcal
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[Note] Electric quadrupole

« The commonly encountered level of 1 T static magnetic field is equivalent to a 299.8 MV/m
static electric field in force for a relativistic (v = c) charged patrticle.

o This electric field exceeds typical breakdown limits on metallic surfaces by nearly two
orders of magnitude, giving partial explanation to the predominance of magnetostatic
devices over electrostatic devices for manipulation of charged particle beams.

 Therefore, the transverse electric field quadrupole is found mainly in very low energy
applications.

<tV z
‘ ',l)l;‘ /

Alternating in space

Hyperbolic surfaces rotated by 45 degrees
from magnetic case

Alternating in time Alternating in time + longitudinal modulation
Moses Chung | Accelerator Summer School (Lecture 2) 7
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“ Periodic focusin g

 Most large accelerators are made up of several (or many) identical modules and,
therefore, have periodicity of L,:

— Circular machine: L, = C/M,,
— Linear machine: array of simple quadrupole magnets with differing sign field gradient

Number of repeated periods along the circumference C

I

yu

pb F D F D F D F D
AYAANAYANANAYANANAYANANAY4
LA U A U A U LA U A

—
S Oor 2

e Hill’s equation:
o+ k2(2)e =0, kKA(z+L,) =ri(2) = K,(2) in some other books
» Two special cases which can be readily analyzed.

— The focusing is sinusoidally varying: Mathieu equation

— The focusing is piece-wise constant : Combination of a number of simple harmonic oscillator
solutions

Moses Chung | Accelerator Summer School (Lecture 2) 8
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Matrix formalism

T €Zy
x(z0) = ( » ) = ( 'r: ) = (¢ o)’
Z=Zn e

e |nitial state vector:

o Solution of the simple harmonic oscillator for K250
'
r(z) = wicos[kog(z — 20)] + ﬁ sinf[ro(z — zp)]
2 (z) = —kox;sin[kg(z — 2z9)] + 2} cos[ro(z — 20)]

— If conveniently expressed by a matrix expression:

x(z) = Mp - x(20)

cos[ro(z — z0)] hiu sin[ko(z — 20)]
—rosin[ko(z — z9)]  cos[ro(z — z0)]

|

— Through a focusing section of length {:

cos|rol] hiu sin[rol]
—rkgsin[kol]  cos[rol]

|

Moses Chung | Accelerator Summer School (Lecture 2) 9
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Matrix formalism (cont’d)

«  Solution of the simple harmonic oscillator for #j = —|rol|* < 0:

o

xv(z) = ax;coshl|rol(z — z0)] + "I"’-l sinh(|rg|(z — z0)]
K
2'(z) = |ko|z;sinh[|ko|(z — 2z0)] + 2 cosh[|ko|(z — 20)]

— If conveniently expressed by a matrix expression:

x(z) = Mp - x(z0)

cosh||ro|(z — z0)] L sinh[|ro|(z — 20)] ]
MD = . Ko
|ko| sinh[|ko|(z — 20)]  cosh||ko|(z — 2z0)]
* Limiting cases: Length of drift space
— Force-free drift: ko — 0 /
_ _ I N I Y The position x changes
Mp=Mp =Mo = [ 0 1 ] N [ 0 1 | while the angle x’ does not

—  Thin-lens limit: { — 0 while x2[ is kept finite

M _ 1 01 1 0] The change in position x is negligible
F(D) — .2 - 1 .
! +5 1 and only the angle X’ is transformed

Focal length

Moses Chung | Accelerator Summer School (Lecture 2) 10
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“— [Example 1] Doublet
o Step-by-step matrix multiplication of all individual elements:
F D
| L |
S, S,
152 L 0 1 L L0o] |[1-F L
O PR IR | B R
! ! l+ Effective focal length of the syst
- T . ective 1ocal len (0] e sysiem
- h kR ’ /

* For vertical direction: reversing sign of f; and f,

 There is a region of parameters where the sign of f* is the same and positive for both
horizontal and vertical planes (for example, when f; = f,), which corresponds to the
focusing in both planes.

Moses Chung | Accelerator Summer School (Lecture 2)
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e [Example 2] FODO lattice

* Focus(F)-Drift(O)-Defocus(D)-Drift(O) lattice:

F o) D o) F

X(;’) = X(L + ,3’0) = X(QL-d_ + 20 + Z(J) =Mp -Mp-Mp-Mp- x(zn) = M - X(ZU)

1 — La _ (La ’ 2L, + L3 Oz L{,
Mz = / ! “hd Ty = Sii Si; What about y direction ?
_% L'f +1 E):r;.,- OL’:

* Note that the matrix product given above is written in reverse order from that in which the
component matrices are physically encountered in the beam line. Confusion on the
ordering of matrices is the most common mistake made in the matrix analysis of beam

dynamics!

Moses Chung | Accelerator Summer School (Lecture 2) 12



T Pseudo-harmonic oscillations

o Let’s try for the solution of the Hill's equation in the following form:
A constant determined by initial

A constant determined by initial . ’
conditions of the particle. / conditions of the particle

In some other books:

€ — 2.J x(s) = Vef(s) cos[o(s) —
Beta function, proportional / \
to the square of the. Phase change of the
envelope of the oscillation oscillation: betatron phase

Vesin[o(s) — )]

* New differential equations (depending only on the magnetic lattice)

| 1 !
—B(s)B"(s) — 15’2(5) + k(s)3%(s) =1 0'(s) =

/2

Envelope equation Moses Chung | Accelerator Summer School (Lecture 2) ~ Phase advance equation 13




T Pseudo-harmonic oscillations

3'(s) / Meaning of the alpha function:
e By defining alpha function as afs) = -2 slope of the change in the envelope
2 (a > 0: converging, a < 0: diverging)

2(s) = \/eB(s) cos [o(s) — () = =[50 {sinlo(s) — v + a(s) cosla(s) - v}

» With the following initial conditions:

B(s = s9) = PBo, als=sp) =ag, o(s=s9)=0
. | € . / /
;;_:(3 = 3{}) =an = 6.‘30 coSs [_L' ;'I:f(.S’ = 3(]) — .'I.ff) = — 3—) {_Slll[—'-i_-",-‘] + (?()S[—"(:-",-']}
O

iy . . o
\/E SN Y = g

Vi | V5o

i Ie !
— Vecosy = + Boxy

e Using trigonometric identities:

x(s) = eb(s)cos|o(s) — ] = \/eB(s) [cos o(s) costy + sin ¢(s) sin

@ {cos &(s) + apsino(s)}
20

+ a { 3(s) P sin o(s)]

Moses Chung | Accelerator Summer School (Lecture 2) 14
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The elements of the transfer matrix can be expressed via the Twiss functions (a, §,y) at
the beginning and end of the beam line:

B(s)

M [ C(s)  S(s) ] 5 {cos Ao + apsin Ag} /B(s)Bosin Ag
Sp—+s C,‘f(s) S”(S) - B (ex(s)—agp) cos 1:\/():(_ [:}1 ;)}—n-(s)u“) sin A 7’;:) {(?O.‘-‘a A() . (.1-:(.%’) Sin A(J}
v 218} =0 - -
where

- 5 ds’
A = o(s) = d(s0) = o(s) = [ -
—— J sq ;3(5")
~0

* One can also have the following decomposition:

3((“’}) U ] " { cos A¢  sinA¢ ] » [ L 0 ]
o als 1 —ain A s L,_\'.'[)
NEORRVED) sin Ao cos A Bo
cos Ao sin Ao 1
= B(s N BT (s
(5) [ —sin A¢p  cos Ag } (50)

MSU—>.“‘

$

CW rotation

Moses Chung | Accelerator Summer School (Lecture 2) 15
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Connection with matrix formalism

e So far, we haven't yet assumed any periodicity in the transfer line. However, we may
consider a periodic machine, and then the transfer matrix over a single turn (or single
lattice period) would reduce to

When we impose periodic
boundary condition

cos Ao + o sin Ao B sin Ao )
M _ t 0 ' 0 ' on the beta function
somrsotly _ 0499 iy Ag cos [t — ag sin Ao 2/ ;
| Bo OS L= Qo B(so+ Ly) = By
B COS [t + g SIn L B sin
—p Sin ju COS [L — (g Sin ju

where we define gamma function

1L+ ol
Bo

o

and phase advance for one turn (or one period)

= A¢p

Moses Chung | Accelerator Summer School (Lecture 2) 16



R Courant-Snyder invariant

« Hill's equation have a remarkable property: they have an invariant!

x(s) = V/eB(s) cos [o(s) — 2'(s) = —,| 3;5) {sin[o(s) — ] + a(s) cos[o(s) — ]}
— Vecos [o(s) — ] = :L.(_S) . Vesin[o(s) — Y] = as)z(s) + 1/ B(s)2'(s)
' ' V B(s) vV B(s)

e Using trigonometric identities:

’ 2
-'U(S‘) 05(5');'}3(3) B(s)r' (s — € = CcOons

e = B(s)x"%(s) + 2a(s)x(s)a’(s) + v(s)x?(s) = B(so)x"(s0) + 2a(s)x(s0)x" (s0) + v(s0)x>(50)

This invariant is known as Courant-Snyder invariant: Even though an initial point in the
trace space (x(sy), x'(sy),) changes to a different position (x(s), x'(s),), the Twiss
parameters (a, 5,¥) change at the same time in such as way that € remains constant.

Moses Chung | Accelerator Summer School (Lecture 2) 17
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Phase space (or trace space) ellipse

 The Courant-Snyder invariant defines an (tilted) ellipse in phase space (x, x"):

2 2
e = 7(5)2%(s) + 2a(s)z ()2’ (s) + B(s)a"(s) = ( g())) + (%)) 4 /_Ja(sw(s))

X' max Slope = —u/p

20y
v—08

tan 2¢ =

Arca in phase-space = me = const.

[€] = m-rad, or mm-mrad, or T mm-mrad

LTmar = V Eﬁ, T:’n! — 6'/f\

P .’F —_— i (
'["-?'n,aa: - €7, zm‘ - F/
ar
A 3’1 + ﬁ

 Or, inthe normalized coordinates, it defines a circle: Ve

e 2 -
¢ — ( :13(.9) ) n (O(S).“{.‘(s) + \/,’;f(s).rf(s)) = :z:.?, +;1:_‘;'f \

3(s) 3(s)

\_
-

Moses Chung | Accelerator Summer School (Lecture 2) 18
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Typical trajectory

« Slow simple harmonic oscillator-like behavior (secular motion) + Fast oscillatory motion
with lattice period:

Maximum envelope a particle

with arbitrary initial conditions
/ can have

= Higher [ --
smaller phase advance
larger beam size

Lower (3 --
greater phase advance
smaller beam size

Moses Chung | Accelerator Summer School (Lecture 2) 19
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Single particle
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Laminar vs Non-laminar Beams

llllllllllllllllllllll

A X
- [ —
X
f / z
M A A A
. |
R NI RERE DR 7 S
xo ]

N
X
z
ﬁ%}l S=
N A A i 5
\1_;;.;;'14,'.'.4" ’_F e K‘I T
o :/‘
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 We assume the particle distribution is a bi-Gaussian distribution in the following form:

, 1 vyr? + 20z’ + Bx'? € (z/v/B)? + (VB +ax/\/B)?]
flz,a') = exp | — X exp | — x exp |—
Qﬂerms—; QErms-: 2€rms 261‘1‘r1.~: d
1 _ 2! . - axr
% = 0 (e = invariant) A €3 AV B’ + NE]
as \/a #
-2
RN
/ B &J N
Constant (single particle) emittance ellipses Constant (single particle) emittance circles in the
define contours of constant phase-space normalized coordinates define contours of constant
distribution density phase-space distribution density

« The rms beam emittance is proportional to the average of all the single particle emittances.

« The rms beam emittance is defined through the ellipse of the exp[-1/2] contour relative to
the peak density contour.

Moses Chung | Accelerator Summer School (Lecture 2) 22
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“Normalization of the distribution function

 First, check the normalization:

T
e'e 00 - 2 : / Q.02 Ly = .
1 yr® + 2axa’ + Ba’* V3
/ / Ndudr' = / / ‘ exp | — dada’ VB
J—0o0 J —oC 2?]—61‘1115 L Q‘Clms ; \/§ ’—I— r
. - r, =\ fr + —
S | @y, tay " Ve
= exp | ———"| dx,dx!, '
=00 o —O0 2}1—(:'1'111:‘3 L 261111")
I 9 1
€ 2 /2
B / CxXp [_- ] mde €=, +u,
Jo 27‘—(1‘1115 2(I‘III5
= 1

 Meaning of the rms beam emittance:

: 1 . Integration by parts
(e) = [ exp [ ' ] de
0

9
o0 » OO0 ‘ €
+ 2€rms €XP | —- de
0 J0O 2(:-1'1115

(-Cl'lllt.'i

2‘:1111:-.
€
— 9 261111% exp _2
€rms €rms

— 2(IIII“-:

Action

Moses Chung | Accelerator Summer School (Lecture 2) 23
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Moments of the distribution function

 From the general properties of the bi-Gaussian distribution in (x, y) plane:

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Fo.y) 1 1 5 ) dx0, N 512 }
T,y) = = exp | —- — —2p—2 + =
ST 2ro,o,(1 — p2)1/2 P 2(1 —p?) \ o2 f 0.0y 02 )]
Where br=x—(x), dy=y—(y)

or = (62%), O‘_g = (6y°), 0.y = (62by) = po,0,
covariance

* By comparing with the beam distribution in (x, x") space:
(x) = {2') = 0 when beam is alinged to its design axis

0--2\ = <332> = €rms, (7;?:’ - <.’I?F2> = €rms7s Oga’ = <-'I-"3:f> = —Erms¥

€rms = 0,0, (1 — pg)l/Q = \/0202, p*o? f, =/ (2?) (2'?) — (:1::_1:")2

\ \ ‘ Terms = Area of the exp[-1/2] contour
J )

exXpi— If"_l contour

Moses Chung | Accelerator Summer School (Lecture 2) 24
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Beam matrix

e The beam matrix is the second-order moments of the beam distribution:

Contains all the necessary ) . .
information describing the beam — e [ foo—a ] If the bSean;I aligns with Courant-
nyaer parameters

Beam property Lattice properties

 Note that the determinant of the beam matrix is the rms emittance:

det(o) = (%) (2'?) — (:1‘.?;‘1:”)2 =2

e If the transfer matrix is known,

- <M‘m—"‘? ’ "( ) (‘7{) Msu >s>
= M-‘a’[]-)‘“:i ) O‘(S‘U) ) MT

Sp—rSs

Moses Chung | Accelerator Summer School (Lecture 2) 25
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RMS Emittance

* Inthe case of a real beam with a finite number of particles (N), an RMS emittance can be
defined for an effective phase-space (or trace-space) area (or volume).

2 ‘ ‘ 2 AN
s =\ (22) (12) — (apa)?, or 1/ (a2) (2?) — (a) . T =0s
—>Depends not only on the true area X X
occupied by the beam in phase space, /
but also on the distortions produced by
nonlinear forces. (a) (b)

Phase-space area = 0 Phase-space area=0
RMS emittance = 0 RMS emittance > 0

 However, when nonlinear forces act on the system, e.g. nonlinear magnetic fields, space

charge force, the RMS emittance is not conserved. Filamentation
-> Dilution of phase space density

{ 3 { 3 1 3
| 2 1 2 1 2
1 1 1
1 LI 1 ] 1 e o0
-1 -1 1 -1
| -2 I
-2 1 -2
| - I
3 | -3
-4
3 7 T o 1 7 3 3 T 3 7 1 ] 1 7 3 3 4 4
* r 4 3 z 1 o 1 z 3 4 n 3 2 1 [ 1 z 3 +
r x

Moses Chung | Accelerator Summer School (Lecture 2) 26
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Normalized emittance
» In the paraxial approximation, Decrease when there is an acceleration
! dx Uy Da -
T = = ~ po = Bovyomoc

ds v.  po

\ Referece momentum

e We introduced the normalized emittance:

€En — _-":.-))(]ﬂf(lerms

ei = (_Eﬁm.--n)z [(;1?2)(:1;"2) — (;‘I::r:’)g} = (moc) 2 [(:r:"z)(pf.) — (:1?;0,,;)2:

\> constant

 The normalized emittance (not the rms emittance in trace space) is, in fact, invariant under
combined effects of linear transverse forces and longitudinal acceleration.

 This result is a direct consequence of the adibatic damping of beam particle angle under
acceleration, which causes the emittance defined in trace space to be diminished.

 The invariant normalized emittance is an effective area occupied by the beam in the phase
plane, not the trace plane.

Moses Chung | Accelerator Summer School (Lecture 2) 27
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Cicular acclerator

« We analyze the charged particle dynamics near the design orbit. The design orbit is
specified by a certain radius of curvature (R) and a certain momentum (p, = qByR)

« Anew locally defined right-handed coordinate system:

Vertical: direction of dipole magnet field

Individual particle’s radius
p=R+=x

Horizontal: deviation away from the design orbit

Design orbit ds = Rd

e Equation of motion in this new coordinate system:

a2
d YMmov;,
Pp _ 7 ¢ que Bo (2.9)
dt p

 The azimuthal velocity and radial momentum:

Reference /\

Vp = PP 7£ s = vp, and Pp = F}"?n()f‘) - ﬁf’rn'{)jj = Pa

Vg R Vg

Individual particle’s velocity
Moses Chung | Accelerator Summer School (Lecture 2)
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Dispersion (ng or D)

* Change in the design orbit for the off-momentum particle:

\
(P—I ) Ap xg
T=Tg+Npg——— = 2Tg+ "',"rz.:pT =g+ '-'h:()p' R nxSp
/ \ r
On energy reference ¢ rbif
Offset in position  Offset in momentum S

Lowest order Taylor series expansion about the design orbit equilibrium (p, = p, = 0 at
p = R): dp, Ymovg

o 2
j"”l-[) L-U

= —quoBy ~ I —2/Roy+---)—quol3
At Ro(1 + 2/Ro) U0 0 R, ( /Rq ) — quoB3g
,},._.”_LU,U% | P
= - 5 & — qugBy BoRy =
R[‘) q
Now we allow v to be deviated from v,
dp. ~rmov? _ ~mgv?
= —quBy ~ l—x/Ry+---)—quB
d{ _[]){}( + 1/1({[;) i 0 1{[] ( / 0 ) i 0
2 2
YMmov Ymgv
~ - —— —qul3
R{g} R U150
Ymov? i [ 1 qBy]
~ — ; e R P A Y — - .
R? T Ry T
Path length focusing term New term caused by p # p,

Moses Chung | Accelerator Summer School (Lecture 2) 30
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P e s
i Governing equation for dispersion

 We can express the new force balance equation using s as an independent variable:

d d dx

I = = — .. = g —
( ) = ds  vdl D 711 at

. 1 1 q By 1 1 1 Ap 1 1 Ap
=m0t |5 — | Y5t |5 5 1 — — —-—
R Ry P Rg Ry Ry Po R R(} Po

qBo l Po L Po N L (I B ﬁ)
p Hl] P Ry po+ Ap 10 Po

« With the quadrupole term included,

1 B’ 1 A
a2 + [— + g ] x = 2P
R? Po R( Po
15t order in position offse\ \ 15t order in momentum offset
Ap
o |If we substitute x =3+ 1. p;
1 qB’ A D 1 B’ A ) 1 A
RZ  po “ o RZ " pg " po " Ry po
, qB’ 1
L + [ ] Ne = 45—
R po | Ry
=k7

l
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TS olution of the dlsperS|on equation

* For net horizontal focusing, the general solution is composed of homogeneous and

particular solutions: 1
ne = Acos(kys) + Bsin(kys) +  —5—
~ - Fi-b[?,(]

-

homogeneous —
particular

[Note] If there is only bending magnet (i.e., B’ = 0, no quadrupole),

1
Na part = —3 -
f’f.-b R[]

Ry

* If we apply matching boundary conditions at the entrance of the bend magnet (s = 0),

1
2
H-gR()

n,.(0) . 1
cos(kps) + — sin(kps) + —
] ( j K ( h’:ﬁR()

e (s) = lm(“) -

1
Ry RQ

n.(s) = [ — h‘.{;’!’]_-,_.((])] sin(rps) + 12.(0) cos(kps)
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Transfer matrix of dispersion
e In the matrix form,
Na(s) cos[rps] - sin(rps] ey 1. (0)
n — . ’ - sinj(’h';s) ! 0
n.(s) | = —rpsinfrps|]  cos[rps] R ..(0)
0 0 1 1

[Note]

1. Even if there is no dispersion in the beginning (i.e., n,(0) = n.(0) = 0), dispersion can be created
when the beam is transported through a bending magnet.

2. In a straight section (R, — o, i.e., no bending),

() cos|rp$] h—lb sin[kps] 0 7:(0)
n.(s) | = | —rpsin[kps]  cos[kps] 0 n’.(0)
1 0 0 1 1

3. Even in the straight section, dispersion can exist if there is dispersion in the beginning (i.e.,

nx(0) # 0, 15 (0) # 0).
PU

Y,

FIGURE 2.18
Bending magnet creates dis-
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- Long itudinal coordinate

 The canonical dependent coordinate in the longitudinal direction is time of arrival relative to
the design particle. { Early particle (head): < 0
T=1— t(]

Late particle (tail): >0

* In the Hamiltonian analysis, it is useful to introduce a parametrization of the time through a

spatial variable, _
Early particle (head): > 0
g = —ugT = gty — vt = s — vt = 5 — _,i'gl]C?f

Late patrticle (tail): <0

[Note] This is the distance that must be traveled at the design velocity by the design particle, to reach
the position of the temporally advanced (or delayed) particle.

[Note] In some books or codes (such as Wolski's book or MAD), the following notations are used.

z=— —ct
Bo
- 1 AE ~ 35
( o Bo v
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Do Rt |
s Momentum compaction

« The time of flight of an off-momentum particle through travel distance L(p) :

L(p)
t(p) =
v(p)
» First order expansion with paraxial approximation yields
i oL L oL Ly .
0t =0T = — — —0v, =~ — — —SO-;_;Z
(1 vz Vo v
or L du, [ 1 ] op > Lo
— = —— ~ e — —5 | — to = —
Lo Ly 3¢ Yo 1 Po 80]
Here we define the path length parameter (usually called, momentum compaction) as
. 6[;/){4’0
~ 6p/po

which characterizes the path length changes according to the momentum offset. We also used

~ —~

ov., 0 1 op

op = d(meyB) = me(Boy + ~03)
5y = 38353

Moses Chung | Accelerator Summer School (Lecture 2) 35



PALZ EBIEIIADL UNiST
POHANG ACCELERATOR LABO

Phase slip factor (or time dispersion) ——
 We define so-called phase slip factor:

oT [ 1](5-}) op
— >, — | — =1, —

: )r

Lo ”r"é Po Po
- A(d7/to) 1
T @(5;”/15’0) "‘rhz

Note that there is a certain energy (y, = V4, called transition energy) at which the time dispersion
vanishes, and all particle pass through the system in the same amount of time.

1 1

nr=0=a.— =5 =a.— —

T T
dione e =7~ =2 <0, %0 <7
« Below transition: | 2, AR 0 S T

Particles of higher momentum pass through the system more quickly, which is the natural state of
affairs in linear systems.

1 1

iti 7T:—‘__‘>0'. >'
Above transition: |7~ 52~ 2 70 > Yo

Particles of higher momentum take more time to pass the system , since the added path length of a
higher-momentum trajectory outweighs the added advantage in velocity, which becomes
progressively smaller as particle becomes more relativistic.
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Late particle
(high energy)

Synchronous

particle S~

(design energy)

Early particle &

(low energy)

WUNisST

ULSAN NATIONAL INSTITUTE OF

[Example]

Crest

RYVAN
1| '
/N ;

Below transition: stable

/ y W |
Zero\crossing [ Pri2n \/ P=0gt ZSCIia(t)IOn for off crest with
Y

Synchronous particle arrives at the same voltage
wyfT = 2w, or 2mh (h=1,2,---)

\ M \\ / Above transition: stable

P Q.42 =0 oscillation for off crest with
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— . Synchrotron oscillation

Vie

|

SHO-like oscillation near the
synchronous phase

Separatrix

Below transition

Above transition
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« Path length change around the circular path:

//—s (R + T}.-;ﬁp/m)dQ

T — Rdf = ds

dL = (R + n.0p/po)df — RdO = n,.6p/podt

df

. ' o [ )} .
oL = /dL _ P Nedf = o / N

Po . Po

— For a single pass system:

. = oL/Ly _ 1 0. (8) e For a straight section,
- dp/pe s—so0 .y, R(5) R - o0, no contribution to the integral
— For a closed system: In a storage ring, the momentum
0L/ Lg 1 (S) compaction is usually positive
O = — = — = i i- i
OLU/;UU Cy s (but, in an anti-bend, can be negative)

\ Circumference of the design orbit
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‘Chromaticity (or Chromatic aberration)

« Offsets of energy in the particles cause not only dispersion but also result in different
focusing strengths of the magnetic elements:

. . . m m .‘ & B0,
g™ q _ 4P g dp) = k1(1 —0,) = ki — k10, >
i !

p po(l+6,)  po : __'%

[Note] In fact, the weak focusing term from the dipole yields chromaticity as well. But
usually, its contribution is “weaker” than from quadrupoles.
[Note] Chromatic aberration is a nonlinear effect (x §,x).

FIGURE 2.20
Chromaticity of a focusing
quadrupole.

« The chromaticity is always negative: an increase in momentum always leads to a reduction

in focusing strength. Tune is proportional to

- I d(Phase advance)  d(Tune)  dv the net focusing strength
Y do,, - do, - do,,

[Note] In some literatures, the chromaticity is defined after normalization by the tune value.

» ltis possible to reduce the chromaticity sufficiently using sextupoles.
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Q: Z27I=T7|HAAO| PLS-II K& 22 3 GeVE
=M 0| EL|CF. Momentum compaction factor =
0.00138 Olaf_l 7+ 3SH, O] 2 X|= below transition
Ol7tR, OfL|H above transition Q17127
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