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입자가속기의 종류와 원리 개론: 
Part 2 
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 Covered by our magnet experts!   



Magnetic scalar potential 
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• Field free (𝐉 = 0) vacuum region (𝜇 = 𝜇0): 
 

 
• In the limit of a device long compared to its transverse dimensions: 

 
 
 

• The solution of the above equation are of a form that is well behaved on axis (by 
separation of variables): 

Sometimes (-) sign is omitted for simplicity 

 Be careful ! Index convention (n from 1 vs. n from 0) differs in Europe and US, and by authors 
and textbooks 



Multipoles 
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• For 𝑛 = 1: 
 
 
 
 

• For 𝑛 = 2: 
 

Dipole and Skew dipole Quadrupole and Skew quadrupole 

Dipole 
Skew dipole 

Quadrupole 
Skew quadrupole 

Equipotential surfaces form lines 

Equipotential surfaces form hyperbolae 



Motion in quadrupole fields 
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• Force due to quadrupole fields: 
 
 
 

• Meaning of the coefficient 𝑏2: Measure of field gradient 
 
 
 

• Transverse equations of motion for a momentum 𝑝0, assuming paraxial motion near the 𝑧-
axis: 
 
 
 
 

• In standard oscillator form: 
 

• Here, the square wave number is sometimes known as the focusing strength:   



Motion in quadrupole fields (cont’d) 
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• For κ02 > 0, one has simple harmonic oscillation in x (around x=0), and the motion in y is 
hyperbolic. 
 
 
 
 

 
• For κ02 < 0, the motion is simple harmonic(oscillatory) in y, and hyperbolic(unbounded) in x. 

 
• Focusing with quadrupoles alone can only be accomplished in one transverse direction at a 

time. Ways of circumventing this apparent limitation in achieving transverse stability, by use 
of alternating gradient (AG) focusing. 
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[Note] Electric quadrupole 
 

• The commonly encountered level of 1 T static magnetic field is equivalent to a 299.8 MV/m 
static electric field in force for a relativistic (v ≈ c) charged particle.  
 

• This electric field exceeds typical breakdown limits on metallic surfaces by nearly two 
orders of magnitude, giving partial explanation to the predominance of magnetostatic 
devices over electrostatic devices for manipulation of charged particle beams. 
 

• Therefore, the transverse electric field quadrupole is found mainly in very low energy 
applications. 
 
 

Hyperbolic surfaces rotated by 45 degrees  
from magnetic case 

Alternating in space 

Alternating in time Alternating in time + longitudinal modulation 



Periodic focusing 
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• Most large accelerators are made up of several (or many) identical modules and, 
therefore, have periodicity of 𝐿𝑝: 

– Circular machine: 
– Linear machine: array of simple quadrupole magnets with differing sign field gradient 

 
 
 
 

 
 

• Hill’s equation: 
 
 

• Two special cases which can be readily analyzed. 
– The focusing is sinusoidally varying: Mathieu equation 
– The focusing is piece-wise constant : Combination of a number of simple harmonic oscillator 

solutions 

Number of repeated periods along the circumference C 
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Matrix formalism 
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• Initial state vector: 
 
 

• Solution of the simple harmonic oscillator for           :  
 
 
 

 
– If conveniently expressed by a matrix expression: 

 
 
 
 
 

– Through a focusing section of length 𝑙: 
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Matrix formalism (cont’d) 
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• Solution of the simple harmonic oscillator for                       :  
 
 
 
 

– If conveniently expressed by a matrix expression: 
 
 
 

 
• Limiting cases: 

– Force-free drift: 
 
 
 

– Thin-lens limit:  

Focal length 

The change in position x is negligible 
and only the angle x’ is transformed 

The position x changes 
while the angle x’ does not  

Length of drift space 
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[Example 1] Doublet 
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• Step-by-step matrix multiplication of all individual elements: 
 
 
 
 
 
 
 
 
 
 
 

 
 

• For vertical direction: reversing sign of 𝑓1 and 𝑓2 
 

• There is a region of parameters where the sign of 𝑓∗ is the same and positive for both 
horizontal and vertical planes (for example, when 𝑓1 = 𝑓2), which corresponds to the 
focusing in both planes. 

Effective focal length of the system 
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[Example 2] FODO lattice 
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• Focus(F)-Drift(O)-Defocus(D)-Drift(O) lattice: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Note that the matrix product given above is written in reverse order from that in which the 
component matrices are physically encountered in the beam line. Confusion on the 
ordering of matrices is the most common mistake made in the matrix analysis of beam 
dynamics! 

What about y direction ? 
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Pseudo-harmonic oscillations 
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• Let’s try for the solution of the Hill’s equation in the following form: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• New differential equations (depending only on the magnetic lattice)  

Beta function, proportional 
to the square of the 

envelope of the oscillation 

A constant determined by initial 
conditions of the particle 

Phase change of the 
oscillation: betatron phase 

A constant determined by initial 
conditions of the particle. 

In some other books: 
 

Envelope equation Phase advance equation 



Pseudo-harmonic oscillations 
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• By defining alpha function as 
 
 
 

 
• With the following initial conditions: 

 
 
 
 
 
 

• Using trigonometric identities:  

Meaning of the alpha function: 
slope of the change in the envelope 
(𝛼 > 0: converging, 𝛼 < 0: diverging)  



Connection with matrix formalism 
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• The elements of the transfer matrix can be expressed via the Twiss functions (𝛼,𝛽, 𝛾) at 
the beginning and end of the beam line:  
 
 
 
 
 
 
 

 
where 
 
 
 

• One can also have the following decomposition:  

CW rotation 



Connection with matrix formalism 
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• So far, we haven’t yet assumed any periodicity in the transfer line. However, we may 
consider a periodic machine, and then the transfer matrix over a single turn (or single 
lattice period) would reduce to 
 
 
 
 
 
 

where we define gamma function 
 
 
 
and phase advance for one turn (or one period) 

When we impose periodic 
boundary condition 
on the beta function 



Courant-Snyder invariant 
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• Hill’s equation have a remarkable property: they have an invariant! 
 
 
 
 
 
 

• Using trigonometric identities:  
 
 
 
 
 
 

 
This invariant is known as Courant-Snyder invariant: Even though an initial point in the 
trace space (𝑥 𝑠0 , 𝑥′ 𝑠0 , ) changes to a different position (𝑥 𝑠 , 𝑥𝑥 𝑠 , ), the Twiss 
parameters (𝛼,𝛽, 𝛾)  change at the same time in such as way that 𝜖 remains constant. 



Phase space (or trace space) ellipse 
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• The Courant-Snyder invariant defines an (tilted) ellipse in phase space (𝑥, 𝑥′): 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
• Or, in the normalized coordinates, it defines a circle:  

[𝜖] = m-rad, or mm-mrad, or 𝜋 mm-mrad  



Typical trajectory 
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• Slow simple harmonic oscillator-like behavior (secular motion) + Fast oscillatory motion 
with lattice period: 

Maximum envelope a particle 
with arbitrary initial conditions 
can have 

For multi-turns (or multi-particles):  
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Single particle 

Collection of particles: Beam 



Laminar vs Non-laminar Beams 
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Bi-Gaussian distribution 
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• We assume the particle distribution is a bi-Gaussian distribution in the following form: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

• The rms beam emittance is proportional to the average of all the single particle emittances. 
• The rms beam emittance is defined through the ellipse of the exp[-1/2] contour relative to 

the peak density contour. 

Constant (single particle) emittance ellipses 
define contours of constant phase-space 

distribution density 

Constant (single particle) emittance circles in the 
normalized coordinates define contours of constant 

phase-space distribution density 



Normalization of the distribution function 
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• First, check the normalization: 
 
 
 
 
 
 
 

 
• Meaning of the rms beam emittance: 

Integration by parts 

Action 



Moments of the distribution function 
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• From the general properties of the bi-Gaussian distribution in (𝑥,𝑦) plane: 
 
 
 
 

Where 
 
 
 

• By comparing with the beam distribution in (𝑥, 𝑥′) space: 
 
 
 
 

 

https://en.wikipedia.org/wiki/Multivariate_normal_distribution 

covariance 

= Area of the exp[-1/2] contour 



Beam matrix 
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• The beam matrix is the second-order moments of the beam distribution: 
 
 
 
 
 
 
 

• Note that the determinant of the beam matrix is the rms emittance: 
 
 
 

• If the transfer matrix is known, 

If the beam aligns with Courant-
Snyder parameters 

Contains all the necessary 
information describing the beam 

Lattice properties Beam property 



RMS Emittance 
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• In the case of a real beam with a finite number of particles (N), an RMS emittance can be 
defined for an effective phase-space (or trace-space) area (or volume). 
 
 
 
 
 
 

 
 
• However, when nonlinear forces act on the system, e.g. nonlinear magnetic fields, space 

charge force, the RMS emittance is not conserved. 
 
 

Phase-space area = 0 
RMS emittance = 0 

Phase-space area = 0 
RMS emittance > 0 

Depends not only on the true area 
occupied by the beam in phase space, 
but also on the distortions produced by 
nonlinear forces. 
 

Filamentation  
 Dilution of phase space density 



Normalized emittance 
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• We introduced the normalized emittance: 
 
 
 
 
 

• The normalized emittance (not the rms emittance in trace space) is, in fact, invariant under 
combined effects of linear transverse forces and longitudinal acceleration. 
 

• This result is a direct consequence of the adibatic damping of beam particle angle under 
acceleration, which causes the emittance defined in trace space to be diminished. 

 
• The invariant normalized emittance is an effective area occupied by the beam in the phase 

plane, not the trace plane. 

constant 

• In the paraxial approximation, Decrease when there is an acceleration 

Referece momentum 
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Linear 

Circular 



Cicular acclerator 
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• We analyze the charged particle dynamics near the design orbit. The design orbit is 
specified by a certain radius of curvature (𝑅) and a certain momentum (𝑝0 = 𝑞𝐵0𝑅) 
 

• A new locally defined right-handed coordinate system: 
 
 
 
 
 
 
 
 

• Equation of motion in this new coordinate system: 
 
 

 
• The azimuthal velocity and radial momentum:  

Vertical: direction of dipole magnet field 

Horizontal: deviation away from the design orbit 

Design orbit 

Individual particle’s radius 

Individual particle’s velocity 

Reference 

(2.9) 



Dispersion (𝜼 or D) 
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• Change in the design orbit for the off-momentum particle: 
 
 
 
 
 
 

• Lowest order Taylor series expansion about the design orbit equilibrium (𝑝𝑥 = 𝑝𝜌 = 0 at 
𝜌 = 𝑅): 
 
 

 
 Now we allow 𝑣 to be deviated from 𝑣0 

 
 
 
 
 
 
 
 

 

𝜂𝑥𝛿𝑝 
𝑥𝛽 

Offset in position Offset in momentum 

Path length focusing term New term caused by 𝑝 ≠ 𝑝0 



Governing equation for dispersion 
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• We can express the new force balance equation using 𝑠 as an independent variable:  
 
 
 
 
 

• With the quadrupole term included, 
 
 
 
 

• If we substitute   

1st order in position offset 1st order in momentum offset 



Solution of the dispersion equation 
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• For net horizontal focusing, the general solution is composed of homogeneous and 
particular solutions: 
 
 

 
 [Note] If there is only bending magnet (i.e., 𝐵′ = 0, no quadrupole), 

 
 
 
• If we apply matching boundary conditions at the entrance of the bend magnet (𝑠 = 0),  



Transfer matrix of dispersion 
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• In the matrix form, 
 
 
 
 
 
[Note] 
1. Even if there is no dispersion in the beginning (i.e., 𝜂𝑥 0 = 𝜂𝑥′ 0 = 0), dispersion can be created 

when the beam is transported through a bending magnet. 
2. In a straight section (𝑅0 → ∞, i.e., no bending), 

 
 
 
 

3. Even in the straight section, dispersion can exist if there is dispersion in the beginning (i.e., 
𝜂𝑥 0 ≠ 0, 𝜂𝑥′ 0 ≠ 0). 



Longitudinal coordinate 
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• The canonical dependent coordinate in the longitudinal direction is time of arrival relative to 
the design particle. 
 
 

• In the Hamiltonian analysis, it is useful to introduce a parametrization of the time through a 
spatial variable,  
 
 
 
[Note] This is the distance that must be traveled at the design velocity by the design particle, to reach 
the position of the temporally advanced (or delayed) particle. 
[Note] In some books or codes (such as Wolski’s book or MAD),  the following notations are used. 

Early particle (head): < 0 
  
Late particle (tail): > 0 

Early particle (head): > 0 
  
Late particle (tail): < 0 



Momentum compaction 
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• The time of flight of an off-momentum particle through travel distance 𝐿(𝑝) : 
 
 
 

• First order expansion with paraxial approximation yields 
 
 
 
 

Here we define the path length parameter (usually called, momentum compaction) as 
 
 
 
which characterizes the path length changes according to the momentum offset. We also used 

 



Phase slip factor (or time dispersion) 
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• We define so-called phase slip factor: 
 
 
 
 
 
Note that there is a certain energy (𝛾0 = 𝛾𝑡𝑡, called transition energy) at which the time dispersion 
vanishes, and all particle pass through the system in the same amount of time. 
 
 
 
 

• Below transition:  
– Particles of higher momentum pass through the system more quickly, which is the natural state of 

affairs in linear systems. 
 

• Above transition:  
– Particles of higher momentum take more time to pass the system , since the added path length of a 

higher-momentum trajectory outweighs the added advantage in velocity, which becomes 
progressively smaller as particle becomes more relativistic.  



[Example] 
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Below transition: stable 
oscillation for off crest with 
∆𝜑 < 0 

Above transition: stable 
oscillation for off crest with 
∆𝜑 > 0 

Crest 

Zero crossing 
Early particle 
(low energy) 

Synchronous  
particle 
(design energy) 

Late particle  
(high energy) 

*Convention:  
sin function for circular machines, and 
cos function for linear machines. 

Synchronous particle arrives at the same voltage 
 



Synchrotron oscillation 
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Below transition 

Above transition 

SHO-like oscillation near the 
synchronous phase 

𝜑 

Δ𝑊 

𝜑𝑠 



Momentum compaction VS Dispersion   
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• Path length change around the circular path: 
 
 
 
 
 
 
 
 
 
 
 
 

– For a single pass system:  
 
 

– For a closed system: 

Circumference of the design orbit 

For a straight section, 
𝑅 → ∞ , no contribution to the integral 
 
In a storage ring, the momentum 
compaction is usually positive 
(but, in an anti-bend, can be negative) 



Chromaticity (or Chromatic aberration) 
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• Offsets of energy in the particles cause not only dispersion but also result in different 
focusing strengths of the magnetic elements: 
 
 
 
 
 
 
 

• The chromaticity is always negative: an increase in momentum always leads to a reduction 
in focusing strength. 
 
 
 
 

• It is possible to reduce the chromaticity sufficiently using sextupoles. 
 

[Note] In fact, the weak focusing term from the dipole yields chromaticity as well. But 
usually, its contribution is “weaker” than from quadrupoles.  
[Note] Chromatic aberration is a nonlinear effect (∝ 𝛿𝑝𝑥). 

[Note] In some literatures, the chromaticity is defined after normalization by the tune value.    

Tune is proportional to 
the net focusing strength 
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Q: 포항가속기연구소의 PLS-II 저장링은 3 GeV로 
운전이 됩니다. Momentum compaction factor 는 

0.00138 이라고 가정하면, 이 장치는 below transition 
인가요, 아니면 above transition 인가요? 
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