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Introduction: Motivation & Goal

The 34th JKPS | Geunwoo Kim

• Needs:
• Increasingly precise control over the 6D phase space distribution is essential for the success of next-generation 

accelerator applications.

• Key Applications:

• Examples include new operating modes at Free Electron Lasers (FELs) and novel, compact (laser-

driven plasma) acceleration schemes.

• Core Challenge:

• The effectiveness of advanced beam shaping techniques relies on having accurate and detailed 

measurements of the full 6D phase space, which is a difficult task.
2025. 10. 31 2



• Conventional moment-based methods: quadrupole scan
→ discard higher order terms, can’t measure the detailed beam shape.

• Tomography (FBP, SART, MENT):
→ Produce accurate reconstructions, however, higher computational costs, angle constraints, and discard coupling components.

• Machine Learning (ML) based methods:
→ Requires well-defined, large training datasets.

→ A huge, time-consuming process is required (up to a few weeks)

Introduction: Literature review
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Introduction: Proposed solutions

The 34th JKPS | Geunwoo Kim

• New novel algorithm proposed
• Reconstruct phase space using differentiable simulation and neural network.

• Utilize limited measurements from widely available accelerator components.
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Background: concept of NN
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Hidden layersInput 𝑿𝒌 Output 𝒀𝒌

Feedback

(Unknown)

Neural Network (NN) a.k.a Artificial NN (ANN)
• Well-developed open source are available: PyTorch and Tensorflow.

Input Output
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Input
Loss function

(Not output!)

Background: Backpropagation

The 34th JKPS | Geunwoo Kim

Basic principle of feedback in NN
• Backpropagation

• Calculate gradient by using chain rule.
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Background: Computational graphs
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Basic principle of feedback in NN
✓ Computational graphs

• Pytorch store the calculation form in their memory when run the forward propagation.
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What is differentiable simulation?

1. To update input Ԧ𝑥, we need to know gradient 𝝏𝑳
𝝏𝒙

.

2. Whole process should be explained via gradient. 

3. If using PyTorch, the simulation can give the gradient information to PyTorch. → Differentiable

Background: Differentiable simulation
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Input
Loss function

(Not output!)

➢ But, how to apply this concept to phase space reconstruction?
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Background: Differentiable simulation

The 34th JKPS | Geunwoo Kim

Differentiable simulation
• Bmad-X (Library independent), Cheetah (PyTorch-based)

• They can send gradient information to PyTorch NN model.

Standard simulation
• In contrast, standard simulation (ASTRA, ELEGANT, MAD-X, Xsuite, etc.) can’t do that.

• They use the external library which is considered blackbox model because PyTorch can’t interpret its code.

CheetahCheetah

Bmad-XBmad-X
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Method: Overview
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Method: KDF
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Kernel Density Function (KDF)
• Make the histogram to smooth(=differentiable) function

𝑙 = − log 2𝜋𝑒 3𝜀6𝐷 + 𝜆
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Method: Snapshot ensemble data
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Ensemble data taking method
• Get multiple data from single epoch (iteration set).

Contour is drawn by loss function 𝝏𝑳/𝝏𝜽.Moving step is determined by 

learning rate, 𝜶.2025. 10. 31 12



Method: burn-in and minor components
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Evolution of the proposal distribution
• Burn-in: Neglect early estimated results

• 𝑙 = − log 2𝜋𝑒 3𝜀6𝐷 + 𝜆
1

𝑁𝐼𝐽
Σ𝑛,𝑖,𝑗
𝑁,𝐼,𝐽 𝑅𝑛

𝑖,𝑗
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𝑖,𝑗

Why 𝒛 and 𝜹 increase w.r.t iteration?

Variable: QM strength 𝑘

• To reduce 𝑙, algorithm tends to increase entropy term

up to intersection point with the image difference.

• 𝜀𝑧 = 𝑧2 𝛿2 − 𝑧𝛿 2  𝑧 is independent of 𝑘.

→ continuously increase (Entropy increase)

• 𝛿, energy spread, affects to focal point 𝑓.

𝒛

𝜹
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Method: 𝜹 compensation
Effect of 𝜹 on transverse beam size

• 𝒌 𝜹 =
𝑘0

1+𝜹
: 𝛿 ∝ 𝑘−1

• 𝑓 =
𝑥

−Δ𝜃𝑥
=

𝑦

Δ𝜃𝑦
=

𝐵𝜌

𝒌(𝜹)𝑙
: 𝛿 ∝ 𝑓

• Therefore, 𝛿 must be compensated for in every optimization.

Screen location

𝛿 =
𝑝 − 𝑝0
𝑝0
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Results: Simulation
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Test algorithm with simulation

It allows the estimation of nonlinear effect, despite the simulation relying only on linear calculation.

𝒃𝒐𝒖𝒕 = 𝑓𝑙𝑖𝑛𝑒𝑎𝑟 𝒃𝒊𝒏 𝑙𝑄, 𝑘𝑄 + ΔΣ𝑆𝐶(𝒃𝒊𝒏|𝑙𝑄, 𝑘𝑄)

“It reduce the complexity of the function modeled by the NN” ( J. Kaiser, PRAB 054601, 2024).

Simulation Neural Network

Quadrupole scan
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Results: Experimental

The 34th JKPS | Geunwoo Kim

Proof-of-principle experimental @ Argonne Wakefield Accelerator (AWA)

• Well-matched image with nonlinear effect (ex. Space charge)
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Discussion
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Key achievement
• Novel Framework: Differentiable simulation & Neural Network

• Standard equipment: Only use single QM and screen.

Limitations
• Incomplete uncertainly quantification.

• There is limitation to measure 𝛿 accurately.

• High memory consumption.

Future works
• Enhanced uncertainty modeling

• Memory optimization

• Full 6D phase space characterization using TDS and dipole.
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