Research Progress

18. July 2025 윤 주 환

1. Review of the BPRM Device

- Perspective transformation
- Absolute coordinate space

2. Device Checkup

- Grid point scanning
- Motor repeatability
- Actuator linearity

3. Beam Profile Calibration

- Coordinate mapping (Spline)
- Test with laser beam profile

- 4. Result Analysis Method -----

- 1D profile fitting
- Comparison of original & measured

18/07/2025

Brief Concept of the BPRM Device

Motivation

- Obtain the transverse image to verify the original bema profile
- Need this coordinate space

Trouble

- Difference between the screen image and the transverse beam image
- Assembly to relance that precludes the measurement

Solution

- Remap the projected beam image
- Quantify the error and calibrate the original coordinates

18/07/2025 1. Review of the BPRM Device 3

Perspective Transformation

-
$$(u, v) = \left(\frac{ax + by + c}{gx + hy + j}, \frac{dx + ey + f}{gx + hy + j}\right)$$

$$- w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$-\begin{cases} (x_i, y_i) \\ (u_i, v_i) \end{cases}, i = 0, 1, 2, 3$$

Overview of the BPRM Device

Absolute Coordinate Space

2D Transverse image plane

- Define the plane where the beam profile is projected.
- Four coordinates are measured to obtain the transformation matrix.
- Origin (zero-point) is needed to measure the coordinate position.

Grid plate as a reference

- Glass grid plates are aligned parallel to the BPRM chamber flange.
- Camera position is measured by a grid, and grids are removed in the experiment.

Grid Point Scanning

Gaussian Fitting

Grid point, the darkest pixel's position is acquired by the Gaussian distribution of the horizontal and vertical pixels sum of the image

Motor Repeatability

x 30 for each axis

Motor spec

Resolution: 10000 ppr

Actuator screw lead: 10 mm

 \Rightarrow Move the camera 1 mm per pulse

Measurement of the repeatability

- Motor speed: 20000 pps
- Return to origin after moving to both ends of 70 mm
- $\Delta d = \sqrt{(x_i x_0)^2 + (y_i y_0)^2}$ at origin for 30 times
- Evaluate the error via Root Mean Square

Motor Repeatability

Grid-Camera center distance (µm) 0.1 10 30 20 Measurement Number

Repeatability of Vertical Error

Measured distances

y = 0 (Grid center)

RMSE of horizontal axis motor: 0.1398 µm

RMSE of vertical axis motor: 0.1167 µm

$$E_{repeatability} = \sqrt{E_h^2 + E_v^2} = 0.1821 \,\mu m$$

Actuator Linearity Against the Grid

Does the camera module move in a straight line along the grid lines?

- Two-axis motor is moved and image center-grid point distance is measured.
- Each grid line is recorded separately due to the motor's repeatability problem.
- Horizontal and vertical errors on the origin are measured each time and applied as an offset.

Actuator Linearity Against the Grid

Actuator Linearity Against the Grid

Coordinate Mapping

Spline interpolation

- Connecting the nonlinear data smoothly into a single curve.
- The entire data interval can be divided into piecewise functions while boundaries are continuous.

2D spline

- The deviation of the motor movement path from the ideal grid line, Δx and Δy , is interpolated.
- By applying it to the horizontal and vertical grid line, Δx and Δy can be estimated for any point within the grid.

Sample Beam Profile

18/07/2025 3. Beam Profile Calibration 16

1D Pixel Sum Fitting

Method of Processing the Fitting Data

Normalization

- Unify the maximum value into same one
- x range is also adjusted accordingly

Horizontal shift

- Equalize the mean of the Gaussian distribution
- Can identify the beam distribution error

Range fixing

- Remove the range of the extremely low value
- $\pm 4\sigma$ from the mean value

Summary & Future Plan

2D Transverse Space Calibration and Mapping

- To check the screen image projected into the beam cross-section
- Defining an absolute coordinate plane to indicate the position of the screen
- Analyzing position error through grid point-image center distance
- Calculating the exact coordinates of an arbitrary point through a 2D spline
- Rearranging the image taken by the BPRM camera into a 2D beam image

18/07/2025

THANK YOU