Possibility of using EBIT for Exotic Nuclear Physics

Yung Hee KIM CENS, IBS 11/July/2025

Charge state effect on beta decay

- Screening effect known to alter T1/2, beta energy distribution
- Reaction Q-value change $Q=\Delta B_{Nucl}+\Delta B_{Elec}$ => beta decay (T1/2, kE β distribution, kE β end point) property could be changed
- Additional correction screening effect need to be considerd
- Beta decay lifetime change 42 Gyr→35 yr when fully stripped
- 2. beta decay can occur for stable isotope due to bining energy e.g. ¹⁶³Dy (stable), ¹⁶³Dy⁶⁶⁺->¹⁶⁴Ho⁶⁶⁺
- Stellar environment plasma
- Astrophysical s-process modeling
- E.g. ⁵³⁻⁵⁶Fe isotope expected T1/2 2 order of magnitue

Screening effect study-PANDORA project

- T1/2 measurement in plasma inside EBIT
- Low efficiency compensated by the conical hole in the EBIT cryostat
 & many HPGe detectors

Screening effect study on beta decay

FIG. 1. $\mathcal{O}(\alpha)$ Feynman diagrams that open up the forbidden nuclear transition at $|\mathbf{q}|=0$.

FIG. 1. The electrostatic potential for $^{187}\mathrm{Os}^+$ as function of r, where the emitted electron is located, in four different approximation schemes: (A) The final nucleus as an uniform charged sphere. (B) A point-like final nucleus. (C) The final nucleus as a charged sphere filled with protons following a Fermi distribution. (D) The same as the preceding case but the atomic electron screening is taken into account.

• 1.Forbidden beta decay gained new interest to study beyond standard model.

• 2. Neutrino mass study very low Q-value e.g. ¹⁸⁷Re-> ¹⁸⁷Os

 Screening effect significantly alter the partial decay rates in the forbidden beta decay

Chien-Yeah Seng et al., PRL 134, 081805 (2025)

- O. Nitescu R. Dvornický and F. Šimkovic PHYSICAL REVIEW C109,025501(2024)
- X. Mougeot, Applied Radiation and Isotopes 201 (2023) 11101

EBIT as trap: 2β decay study in trap TRIUMF case

- Double-beta decay expected to be different with/without presence of neutrino.
- Find very mweak transition only possible in neutrinoless double beta decay
- Precision branching ratio of double beta-decay EC isotopes requires β background-free measurement -> EBIT storage
- Initially, EBIT as trapping ->separate collection due to ion trapping time issue

EBIT as trap: 2β decay study in trap TRIUMF case

K.G. Leach et al. NIM A 780 (2015) 91-99

- Double-beta decay expected to be different with/without presence of neutrino.
- Find weak transition only possible in neutrinoless double beta decay
- Precision branching ratio of double beta-decay EC isotopes requires β background-free measurement -> EBIT storage
- Initially, EBIT as trapping ->separate collection due to ion trapping time issue

EBIT as trap: 2β decay study in trap

K.G. Leach et al. NIM A 780 (2015) 91–99

- Double-beta decay expected to be different with/without presence of neutrino.
- Find weak transition only possible in neutrinoless double beta decay
- Precision branching ratio of double beta-decay EC isotopes requires β background-free measurement -> EBIT storage
- Initially, EBIT as trapping ->separate collection due to ion trapping time issue

Precision mass measurement with EBIT

Fig. 4 Precision reached during MPET (SCI vs HCI) and MR-TOF-MS mass measurements in compassion to the respective expected precision based on mass resolving power and number of detected ions. The dashed lines show performance predictions assuming a perfect spectrometer with systematic uncertainties of 2×10^{-9} for MPET and 1×10^{-7} for MR-TOF-MS. A selection of different measurement results are shown

Anna A. Kwiatkowski et al., Eur. Phys. J. A (2024) 60:87

- Already case @ TRIUMF TITAN
- Precision increase proportional to the charge state
- EBIT charge breeding with even 2+,3+ could bring factor 2-3 better resolution
- Difficulty maintaining charge state for long term measurement
- Ultra-high vacuum (10^-12 torr) & cryo temperature required
 Construction He gas cooling no longer can be done
- Future project for penning trap

Low energy beam line for Decay & mas spectroscopy

