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In this lecture...

In this lecture, we shall discuss methods for constructing

transfer maps for accelerator elements. We have already seen

how to do this for a drift space: but this is a special case,

because the equations of motion can be solved exactly.

In this lecture, we shall discuss two powerful techniques for

constructing (and representing) maps for accelerator elements:

• Lie transformations;

We shall use a sextupole as an example, but the techniques we

develop are quite general.
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Hamiltonian for a drift space

Recall the general Hamiltonian for an accelerator element:

H = −(1 + hx)

√√√√( 1

β0
+ δ −

qϕ

P0c

)2
− (px − ax)

2 − (py − ay)
2 −

1

β2
0γ

2
0

−(1 + hx)as +
δ

β0
. (1)

For a drift space, this becomes:

H = −

√√√√( 1

β0
+ δ

)2
− p2x − p2y −

1

β2
0γ

2
0
+

δ

β0
. (2)

The equations of motion are given by Hamilton’s equations:

dx

ds
=

∂H

∂px
,

dpx

ds
= −

∂H

∂x
, (3)

and similarly for (y, py) and (z, δ).
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Transfer map for a drift space

The equations of motion for a drift space are easy to solve,
because the momenta px, py and δ are constants of the motion.
The solution can be expressed as a map in closed form: the
Hamiltonian is integrable.

For the transverse variables:

x1 = x0 +
px0
ps

∆s, px1 = px0, (4)

y1 = y0 +
py0

ps
∆s, py1 = py0. (5)

And for the longitudinal variables, we have:

z1 = z0 +

 1

β0
−

1
β0

+ δ

ps

 ∆s, δ1 = δ0. (6)

The value of ps (a constant of the motion) is given by:

ps =

√√√√( 1

β0
+ δ0

)2
− p2x0 − p2y0 −

1

β2
0γ

2
0
.
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Hamiltonian for a sextupole

A sextupole field can be derived from the vector potential:

Ax = 0, Ay = 0, As = −
1

6

P0

q
k2
(
x3 − 3xy2

)
. (7)

This potential gives the fields:

Bx =
P0

q
k2xy, By =

1

2

P0

q
k2
(
x2 − y2

)
, Bs = 0. (8)

Note that the sextupole strength k2 is given by:

k2 =
q

P0

∂2By

∂x2
. (9)

The normalized potential a⃗ is given by:

a⃗ =
q

P0
A⃗. (10)
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Hamiltonian for a sextupole

Hence, the Hamiltonian for a sextupole can be written:

H = −

√√√√( 1

β0
+ δ

)2
− p2x − p2y −

1

β2
0γ

2
0
+

1

6
k2
(
x3 − 3xy2

)
+

δ

β0
.

(11)
Since the coordinates x and y appear explicitly in the
Hamiltonian, the momenta px and py are not constants. The
equations of motion are nonlinear, and rather complicated. We
will not even bother to write them down, since we cannot find
an exact solution in closed form: the Hamiltonian is not
integrable.

To track a particle through a sextupole, we have to take one of
two approaches:

1. integrate the equations of motion numerically (e.g. using a
Runge–Kutta algorithm) with given initial conditions, or,

2. make some approximations that will enable us to write
down an approximate map in closed form.
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Lie transformations

Numerical techniques, such as Runge–Kutta algorithms, for

integrating equations of motion are standard. The drawback in

their use for accelerator beam dynamics is that they tend to be

rather slow. Often, we are interested in tracking tens of

thousands of particles, thousands of times around storage rings

consisting of thousands of elements. Numerical integration is

no good for this.

We shall therefore focus on the second approach. We shall

make some approximations that will enable us to write down a

map in closed form. There are various ways to do this: we

begin by developing the idea of Lie transformations.

Lie transformations provide a means to construct a transfer

map in closed form, even from a Hamiltonian that is not

integrable. It is necessary to make some approximations, and

these need to be understood in some detail.
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Lie operators

Suppose we have a function f of the phase space variables,

coordinates q⃗ and conjugate momenta p⃗:

f = f(q⃗, p⃗). (12)

Suppose we evaluate f at the location in phase space for a

particle whose dynamics are governed by a Hamiltonian H.

The time evolution of f is:

df

dt
=

dq⃗

dt

∂f

∂q⃗
+

dp⃗

dt

∂f

∂p⃗
. (13)

Using Hamilton’s equations, this becomes:

df

dt
=

∂H

∂p⃗

∂f

∂q⃗
−

∂H

∂q⃗

∂f

∂p⃗
. (14)

Nonlinear Beam Dynamics 7 Part 3: Lie Transformations



Lie operators

We define the Lie operator :g: for any function g(q⃗, p⃗):

:g: =
∂g

∂q⃗

∂

∂p⃗
−

∂g

∂p⃗

∂

∂q⃗
. (15)

Constructing a Lie operator from the Hamiltonian, we can
write:

df

dt
= −:H: f. (16)

Equation (16) suggests that given f at time t = t0, we can
evaluate f at any later time t0 +∆t:

f(t0 +∆t) = e−∆t :H:f
∣∣∣
t=t0

. (17)

Here, the exponential of the Lie operator is defined in terms of
a series expansion:

e−∆t :H: = 1−∆t:H: +
∆t2

2
:H:2 −

∆t3

3!
:H:3 + · · · (18)
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Lie operators

Equation (16) does indeed give us the value of f at any time

t0 +∆t, given the value of f at t = t0.

We can see this by simply making a Taylor series expansion:

f(t0+∆t) = f(t0)+∆t
df

dt

∣∣∣∣
t=t0

+
∆t2

2

d2f

dt2

∣∣∣∣∣
t=t0

+
∆t3

3!

d3f

dt3

∣∣∣∣∣
t=t0

+· · ·

(19)

Then, since from (16) we can write:

d

dt
= −:H: (20)

equation (18) follows.
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Lie transformation

The operator e:g: is called a Lie transformation.

To see how to use Lie transformations to solve the equations

of motion for a given system, consider a familiar example: a

simple harmonic oscillator in one degree of freedom.

The Hamiltonian is:

H =
1

2
p2 +

1

2
ω2q2. (21)

Suppose we want to find the coordinate q as a function of time

t. Of course, in this case, we could simply write down the

equations of motion (from Hamilton’s equations) and solve

them (because the Hamiltonian is integrable). However, we can

also write:

q(t0 +∆t) = e−∆t :H: q
∣∣∣
t=t0

. (22)
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Lie transformation example: harmonic oscillator

To evaluate the Lie transformation, we need :H:q. This is given

by (15):

:H:q =
∂H

∂q

∂q

∂p
−

∂H

∂p

∂q

∂q
= −

∂H

∂p
= −p. (23)

Similarly, we find:

:H:p = ω2q. (24)

This means that:

:H:2q = :H:(−p) = −ω2q, (25)

:H:3q = :H:(−q) = ω2p, (26)

and so on.
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Lie transformation example: harmonic oscillator

Using the above results, we find:

q(t0 +∆t) = q|t=t0
− ∆t:H:q|t=t0

+
∆t2

2
:H:2q

∣∣∣∣∣
t=t0

− · · ·

(27)

= q(t0) +∆t p(t0)− ω2∆t2

2
q(t0)− · · · (28)

Collecting together even and odd powers of t, we find that

equation (28) can be written:

q(t0 +∆t) = q(t0) cos(ω∆t) +
p(t0)

ω
sin(ω∆t). (29)

Similarly (an exercise for the student!) we find that:

p(t0+∆t) = e−∆t :H:p(t0)
∣∣∣
t=t0

= −ωq(t0) sin(ω∆t)+p(t0) cos(ω∆t).

(30)
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Lie transformation example: harmonic oscillator

Equations (29) and (30) are the solutions we would have found

using the conventional approach of integrating the equations of

motion: but note that we have not performed any integrations,

only differentiations (though we have had to sum an infinite

series...)

Lie operators and Lie transformations have many interesting

properties that makes them useful for analysing the behaviour

of dynamical systems. We shall explore these properties further

in the next lecture; but for now, we shall simply see how to

apply the technique demonstrated for the harmonic oscillator,

to a particle moving through a sextupole.
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Sextupole map: Lie transformation approach

Recall the Hamiltonian for a sextupole (11):

H = −

√√√√( 1

β0
+ δ

)2
− p2x − p2y −

1

β2
0γ

2
0
+

1

6
k2
(
x3 − 3xy2

)
+

δ

β0
.

Using Lie operator notation, we can write the map for a

particle moving through the sextupole as:

x⃗(s0 +∆s) = e−∆s :H: x⃗
∣∣∣
s=s0

. (31)

Since the Lie transformation evolves the dynamical variables

according to Hamilton’s equations (for the Hamiltonian H) the

map expressed in the form (31) is necessarily symplectic. Since

application of a Lie transformation just involves differentiation

and summation (of an infinite series) we can, in principle, apply

the map in this form, for any Hamiltonian.
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Sextupole map: Lie transformation approach

However, a map expressed as a Lie transformation is not

explicit: it requires algebraic manipulation before we can simply

put in the values of the dynamical variables at the entrance of

the magnet, and obtain the values at the exit of the magnet.

For tracking simulations, it is much more useful to have an

explicit map, which we can apply by simply substituting

numbers into a given formula. For example, equations (29) and

(30) give an explicit map for the harmonic oscillator.

To produce an explicit map, we can simply evaluate the Lie

transformation for each of the dynamical variables, keeping

terms in the series expansion up to some order in s.

To see how this works, let us apply the technique to a

sextupole.
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Sextupole map: Lie transformation approach

First of all, dealing with the full Hamiltonian for the sextupole
makes things unnecessarily complicated. Let us assume that
δ = 0, and that y = py = 0. Then, we have motion in only one
degree of freedom (x). Further, let us take the limit β0 → 1.
Then, the Hamiltonian (11) becomes:

H = −
√
1− p2x +

1

6
k2x

3.

Now let us evaluate the Lie transformations of x and px. To
first order in ∆s, we find:

x(s0 +∆s) = e−∆s :H:x
∣∣∣
s=s0

= x0 +
px0∆s√
1− p2x0

+O(∆s2),

(32)

px(s0 +∆s) = e−∆s :H:px
∣∣∣
s=s0

= px0 −
1

2
k2x

2
0∆s+O(∆s2).

(33)

where x0 = x(s0), etc.
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Sextupole map: Lie transformation approach

If we truncate the sextupole map (32) and (33) to first order in
∆s, we obtain:

x(s0 +∆s) = x0 +
px0∆s√
1− p2x0

,

px(s0 +∆s) = px0 −
1

2
k2x

2
0∆s.

This map looks like the map for a drift space of length ∆s, but
with the addition of a momentum “kick” of size −1

2k2x
2
0∆s.

Note that the deflection is proportional to the square of the
initial co-ordinate: this reflects the nonlinear nature of the field.

It is possible to use the above map for a sextupole in a tracking
code. But we can expect to have lost a lot of accuracy by
truncating the series expansion for the Lie transformation at
first order in ∆s. In fact, the truncation has a rather
unpleasant consequence...
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Sextupole map: Lie transformation approach

If we calculate the Jacobian J of the truncated map, and check

for symplecticity, we find:

JTSJ =

(
0 1+∆

−1−∆ 0

)
(34)

where

∆ =
k2x0∆s2(
1− p2x0

)3
2

. (35)

There is a “symplectic error” of order ∆s2. If we require

symplectic maps (for a tracking code, for example), this is bad

news. However, we know that the full map, including all terms

in the Lie transformation, must be symplectic. This implies

that, if we keep more terms, the symplectic error must appear

in higher order in ∆s.
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Sextupole map: Lie transformation approach

To reduce the “symplectic error” we can construct the map to

second order in s. The result is:

x(s0 +∆s) = x0 +
px0∆s√
1− p2x0

−
k2x

2
0∆s2

4
(
1− p2x0

)3
2

+O(∆s3),

(36)

px(s0 +∆s) = px0 −
1

2
k2x

2
0∆s−

k2x0px0∆s2

2
√
1− p2x0

+O(∆s3).

(37)

The higher order terms get increasingly complicated and

difficult to interpret. It also very quickly gets cumbersome to

work out the symplectic error — but we find, as expected, that

if we work out the map to order N , then the symplectic error is

of order N +1.
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Summary

• The transfer map for an accelerator element can be represented in
symplectic form as a Lie transformation:

x⃗(s) = e−:H:sx⃗(0),

where H is the Hamiltonian.

• An explicit map in the form of a power series can be obtained from a
Lie transformation, by performing the appropriate differentiations. In
general, a map in the form of an infinite series is produced.

• A map in a convenient form for tracking can be obtained by truncating
the infinite series obtained by evaluating a Lie transformation. However,
it may be necessary to retain high order terms in order to maintain
accuracy, and reduce effects arising from the fact that the truncated
map is no longer symplectic.

Nonlinear Beam Dynamics 20 Part 3: Lie Transformations


