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SELF FIELDS AND WAKE FIELDS

Space charge fields
One of the most studied collective effects is the beam’s own Coulomb field on a particle in the 
beam (beam-self interaction). This is called the space charge fields or space charge effect.



Lorentz transformation of electric and 
magnetic fields 

• We consider a charge 𝑞 which is instantaneously at rest in a frame 𝑆′.  
It experiences an electric field 𝐸′ and magnetic field 𝐵′.  We shall 
assume that the axes of frames are parallel and the origin of 𝑆′ moves 
on the 𝑥-axis of 𝑆 with a speed of 𝑣.  According to 𝑆, the charge moves 
with a speed of 𝑣 along the 𝑥-axis. 

Ԧ𝐹 = 𝑞 𝐸𝑥 Ƹ𝑖 + 𝐸𝑦 Ƹ𝑗 + 𝐸𝑧
෠𝑘 + 𝑞 𝑣 Ƹ𝑖 × 𝐵𝑥 Ƹ𝑖 + 𝐵𝑦 Ƹ𝑗 + 𝐵𝑧

෠𝑘

𝐹𝑥 = 𝑞𝐸𝑥 𝐹𝑦 = 𝑞 𝐸𝑦 − 𝑣𝐵𝑧 𝐹𝑧 = 𝑞 𝐸𝑧 + 𝑣𝐵𝑦

𝐹𝑥
′ = 𝑞𝐸𝑥

′ 𝐹𝑦
′ = 𝑞𝐸𝑦

′ 𝐹𝑧
′ = 𝑞𝐸𝑧

′ Ԧ𝐹′ = 𝑞 𝐸′ + 𝑢′ × 𝐵′

0



Lorentz transformation of electric and 
magnetic fields

• From force transformation equation, where particle is at rest in a frame 𝑆′,     

𝐹𝑥 = 𝐹𝑥
′ 𝐹𝑦 = 𝐹𝑦

′/𝛾 𝐹𝑧 = 𝐹𝑧
′/𝛾

Thus,     𝑞𝐸𝑥 = 𝑞𝐸𝑥
′ 𝑞 𝐸𝑦 − 𝑣𝐵𝑧 = 𝑞𝐸𝑦

′ /𝛾 𝑞 𝐸𝑧 + 𝑣𝐵𝑦 = 𝑞𝐸𝑧
′/𝛾

Electric field in 𝑆′

𝐸𝑥
′ = 𝐸𝑥 𝐸𝑦

′ = 𝛾 𝐸𝑦 − 𝑣𝐵𝑧 𝐸𝑧
′ = 𝛾 𝐸𝑧 + 𝑣𝐵𝑦

Inverse Transformation,

𝐸𝑥 = 𝐸𝑥
′ 𝐸𝑦 = 𝛾 𝐸𝑦

′ + 𝑣𝐵𝑧
′ 𝐸𝑧 = 𝛾 𝐸𝑧

′ − 𝑣𝐵𝑦
′



Lorentz transformation of electric and 
magnetic fields
• We now consider 𝑞 which is moving with a speed 𝑢0

′ along positive 𝑦′ axis 

a frame 𝑆′.  It experiences an electric field 𝐸′ and magnetic field 𝐵′.

𝐹′ = 𝑞 𝐸𝑥
′ Ƹ𝑖 + 𝐸𝑦

′ Ƹ𝑗 + 𝐸𝑧
′ ෠𝑘 + 𝑞 𝑢0

′ Ƹ𝑗 × 𝐵𝑥
′ Ƹ𝑖 + 𝐵𝑦

′ Ƹ𝑗 + 𝐵𝑧
′ ෠𝑘

𝐹𝑥
′ = 𝑞 𝐸𝑥

′ + 𝑢0
′ 𝐵𝑧

′ 𝐹𝑦
′ = 𝑞𝐸𝑦

′ 𝐹𝑧
′ = 𝑞 𝐸𝑧

′ − 𝑢0
′ 𝐵𝑥

′

According to 𝑆, the charge moves with a velocity 𝑢, the components

of which are given by inverse velocity transformations.

𝑢𝑥 =
𝑢𝑥

′ +𝑣

1+
𝑣𝑢𝑥

′

𝑐2

= 𝑣 𝑢𝑦 =
𝑢𝑦

′

𝛾 1+
𝑣𝑢𝑥

′

𝑐2

=
𝑢0

′

𝛾

𝑢𝑧 =
𝑢𝑧

′

1+
𝑣𝑢𝑥

′

𝑐2

= 0 𝑢𝑥
′ = 0, 𝑢𝑦

′ = 𝑢0
′ , 𝑢𝑧 = 0



Lorentz transformation of electric and 
magnetic fields

• Ԧ𝐹 = 𝑞 𝐸 + 𝑢 × 𝐵

= 𝑞 𝐸𝑥 Ƹ𝑖 + 𝐸𝑦 Ƹ𝑗 + 𝐸𝑧
෠𝑘 + 𝑞 𝑣 Ƹ𝑖 +

𝑢0
′

𝛾
Ƹ𝑗 × 𝐵𝑥 Ƹ𝑖 + 𝐵𝑦 Ƹ𝑗 + 𝐵𝑧

෠𝑘

= 𝑞 𝐸𝑥 Ƹ𝑖 + 𝐸𝑦 Ƹ𝑗 + 𝐸𝑧
෠𝑘 + 𝑞

𝑢0
′ 𝐵𝑧

𝛾
Ƹ𝑖 − 𝑣𝐵𝑧 Ƹ𝑗 + 𝑣𝐵𝑦 −

𝑢0
′ 𝐵𝑥

𝛾
෠𝑘

𝐹𝑥 = 𝑞 𝐸𝑥 +
𝑢0

′ 𝐵𝑧

𝛾
𝐹𝑦 = 𝑞 𝐸𝑦 − 𝑣𝐵𝑧 𝐹𝑧 = 𝑞 𝐸𝑧 + 𝑣𝐵𝑦 −

𝑢0
′ 𝐵𝑥

𝛾

𝐹𝑥 =
𝐹𝑥

′+𝑣𝐹′∙𝑢′/𝑐2

1+𝑣𝑢𝑥
′ /𝑐2 = 𝐹𝑥

′ + 𝑣𝐹𝑦
′𝑢0

′ /𝑐2

𝐹′ ∙ 𝑢′ = 𝐹𝑥
′𝑢𝑥

′ + 𝐹𝑦
′𝑢𝑦

′ + 𝐹𝑧
′𝑢𝑧

′ 𝑢𝑦
′ = 𝑢0

′

𝐹𝑦 =
𝐹𝑦

′

𝛾 1+𝑣𝑢𝑥
′ /𝑐2 =

𝐹𝑦
′

𝛾
𝑢𝑥

′ = 0

𝐹𝑧 =
𝐹𝑧

′

𝛾 1+𝑣𝑢𝑥
′ /𝑐2 =

𝐹𝑧
′

𝛾



Lorentz transformation of electric and 
magnetic fields

• Using the equation corresponding to  𝑥-component,

𝑞 𝐸𝑥 + 𝑢0
′ 𝐵𝑧/𝛾 = 𝑞 𝐸𝑥

′ + 𝑢0
′ 𝐵𝑧

′ +
𝑣

𝑐2 𝑞𝐸𝑦
′ 𝑢0

′

Using the transformation 𝐸𝑥
′ = 𝐸𝑥

𝐸𝑥 + 𝑢0
′ 𝐵𝑧/𝛾 = 𝐸𝑥

′ + 𝑢0
′ 𝐵𝑧

′ +
𝑣

𝑐2 𝐸𝑦
′ 𝑢0

′

→ 𝐵𝑧 = 𝛾 𝐵𝑧
′ +

𝑣

𝑐2 𝐸𝑦
′

Using the equation corresponding to  𝑧-component

𝛾𝑞 𝐸𝑧 + 𝑣𝐵𝑦 − 𝑢0
′ 𝐵𝑥/𝛾 = 𝑞 𝐸𝑧

′ − 𝑢0
′ 𝐵𝑥

′

Using the transformation  𝐸𝑧
′ = 𝛾 𝐸𝑧 + 𝑣𝐵𝑦

        𝛾 𝐸𝑧 + 𝑣𝐵𝑦 − 𝑢0
′ 𝐵𝑥/𝛾 = 𝛾 𝐸𝑧 + 𝑣𝐵𝑦 − 𝑢0

′ 𝐵𝑥
′

→ 𝐵𝑥 = 𝐵𝑥
′

Inverse transformation of z-component of magnetic field

Inverse transformation of x-component of magnetic field



Lorentz transformation of electric and 
magnetic fields
• For obtaining the transformation of 𝑦-component of field, we assume 

that the charge is moving along 𝑧′ direction of frame 𝑆′.   

𝐹′ = 𝑞 𝐸𝑥
′ Ƹ𝑖 + 𝐸𝑦

′ Ƹ𝑗 + 𝐸𝑧
′ ෠𝑘 + 𝑞 𝑢0

′ ෠𝑘 × 𝐵𝑥
′ Ƹ𝑖 + 𝐵𝑦

′ Ƹ𝑗 + 𝐵𝑧
′ ෠𝑘

𝐹𝑥
′ = 𝑞 𝐸𝑥

′ − 𝑢0
′ 𝐵𝑦

′ 𝐹𝑦
′ = 𝑞 𝐸𝑦

′ + 𝑢0
′ 𝐵0

′ 𝐹𝑧
′ = 𝑞𝐸𝑧

′

𝐹 = 𝑞 𝐸𝑥 Ƹ𝑖 + 𝐸𝑦 Ƹ𝑗 + 𝐸𝑧
෠𝑘 + 𝑞 𝑣 Ƹ𝑖 +

𝑢0
′

𝛾
෠𝑘 × 𝐵𝑥 Ƹ𝑖 + 𝐵𝑦 Ƹ𝑗 + 𝐵𝑧

෠𝑘

𝐹𝑥 = 𝑞 𝐸𝑥 −
𝑢0

′

𝛾
𝐵𝑦 𝐹𝑦 = 𝑞 𝐸𝑦 − 𝑣𝐵𝑧 +

𝑢0
′

𝛾
𝐵𝑥 𝐹𝑧 = 𝑞 𝐸𝑧 + 𝑣𝐵𝑦

From 𝐹𝑥 = 𝐹𝑥
′ +

𝑣𝐹𝑧
′𝑢0

′

𝑐2 ,  𝑞 𝐸𝑥 −
𝑢0

′

𝛾
𝐵𝑦 = 𝑞 𝐸𝑥

′ − 𝑢0
′ 𝐵𝑦

′ +
𝑣

𝑐2 𝑞𝐸𝑧
′𝑢0

′

𝐸𝑥 = 𝐸𝑥
′ 𝐵𝑦 = 𝛾 𝐵𝑦

′ −
𝑣

𝑐2 𝐸𝑧
′

• 𝐵𝑥
′ = 𝐵𝑥 𝐵𝑦

′ = 𝛾 𝐵𝑦 +
𝑣

𝑐2 𝐸𝑧 𝐵𝑧
′ = 𝛾 𝐵𝑧 −

𝑣

𝑐2 𝐸𝑦



o

z

x, x'

y

o'

z'

y'

v

q

vt is the position of the point charge in the lab. frame O.

• In the moving frame O', the charge is at rest
• Electric field is radial with spherical symmetry

• Magnetic field is zero

𝐸′ =
𝑞

4𝜋𝜀0

Ԧ𝑟′

𝑟′3

𝐵′ = 0

Fields of a point charge with uniform motion

𝐸′𝑥 =
𝑞

4𝜋𝜀0

𝑥′

𝑟′3 𝐸′𝑦 =
𝑞

4𝜋𝜀0

𝑦′

𝑟′3 𝐸′𝑧 =
𝑞

4𝜋𝜀0

𝑧′

𝑟′3



Relativistic transforms of the fields from O’ to O

𝛾 =
1

1 − 𝛽2൞

𝐸𝑥 = 𝐸′
𝑥

𝐸𝑦 = 𝛾 𝐸′𝑦 + 𝑣𝐵′𝑧

𝐸𝑧 = 𝛾 𝐸′𝑧 − 𝑣𝐵′𝑦

൞

𝐵𝑥 = 𝐵′
𝑥

𝐵𝑦 = 𝛾 𝐵′𝑦 − 𝑣𝐸′𝑧/𝑐2

𝐵𝑧 = 𝛾 𝐵′𝑧 + 𝑣𝐸′𝑦/𝑐2

𝑥′ = 𝛾 𝑥 − 𝑣𝑡

𝑦′ = 𝑦

𝑧′ = 𝑧

𝑐𝑡′ = 𝛾 𝑐𝑡 −
𝑣

𝑐
𝑥

𝑟′ = 𝑥′2 + 𝑦′2 + 𝑧′2

𝑟′ = 𝛾2 𝑥 − 𝑣𝑡 2 + 𝑦2 + 𝑧2

𝐵′ = 0



𝐸𝑥 = 𝐸′𝑥 =
𝑞

4𝜋𝜀0

𝑥′

𝑟′3
=

𝑞

4𝜋𝜀0

𝛾 𝑥 − 𝑣𝑡

𝛾2 𝑥 − 𝑣𝑡 2 + 𝑦2 + 𝑧2 3/2

𝐸𝑦 = 𝛾𝐸′𝑦 =
𝑞

4𝜋𝜀0

𝑦′

𝑟′3
=

𝑞

4𝜋𝜀0

𝛾𝑦

𝛾2 𝑥 − 𝑣𝑡 2 + 𝑦2 + 𝑧2 3/2

𝐸𝑧 = 𝛾𝐸′𝑧 =
𝑞

4𝜋𝜀0

𝑧′

𝑟′3
=

𝑞

4𝜋𝜀0

𝛾𝑧

𝛾2 𝑥 − 𝑣𝑡 2 + 𝑦2 + 𝑧2 3/2

𝐸 =
𝑞

4𝜋𝜀0

𝛾 Ԧ𝑟

𝛾2𝑥2 + 𝑦2 + 𝑧2 3/2

The field pattern is moving with the charge and it can be 
observed at 𝑡 = 0:

The fields have lost the spherical symmetry.

Relativistic transforms of the fields from O’ to O

Notice the factor 𝛾 that appears in x-dependence of the fields. With increasing velocity, 
the fields become “flattened” towards the plane perpendicular to the direction of motion 
of the charge.



x = r cos

y2 + z2 = r2 sin2

𝐸 =
𝑞

4𝜋𝜀0

𝛾 Ԧ𝑟

𝛾2𝑥2 + 𝑦2 + 𝑧2 3/2

𝛾2𝑥2 + 𝑦2 + 𝑧2 = 𝑟2𝛾2 1 − 𝛽2 sin2 𝜃

𝐸 =
𝑞

4𝜋𝜀0

1 − 𝛽2

𝑟2 1 − 𝛽2 sin2 𝜃 3/2

Ԧ𝑟

𝑟

𝑟𝑐
𝑜

𝑠θ

𝑧

𝑦

𝑥

𝜃
𝑟

𝑡 = 0

Relativistic transforms of the fields from O’ to O

Notice the factor 𝛾 that appears in x-dependence of 
the fields. With increasing velocity, the fields become 
“flattened” towards the plane perpendicular to the 
direction of motion of the charge.



Relativistic transforms of the fields from O’ to O

• Consider the fields along the axes for the case t=0

𝐸𝑥 𝑦 = 𝑧 = 0 =
𝑞

4𝜋𝜀0

1

𝛾2𝑥2

𝐸𝑦(𝑥 = 𝑧 = 0) =
𝑞

4𝜋𝜀0

𝛾

𝑦2

𝐸𝑧(𝑥 = 𝑦 = 0) =
𝑞

4𝜋𝜀0

𝛾

𝑧2

𝐵𝑥 = 0

𝐵𝑦 𝑥 = 𝑦 = 0 =
−𝑣 𝑞

𝑐2 4𝜋𝜀0

𝛾

𝑧2

𝐵𝑧 𝑥 = 𝑧 = 0 =
𝑣 𝑞

𝑐2 4𝜋𝜀0

𝛾

𝑦2



𝛾 =
1

1 − 𝛽2

𝐸 =
𝑞

4𝜋𝜀0

1 − 𝛽2

𝑟2 1 − 𝛽2 sin2 𝜃 3/2

Ԧ𝑟

𝑟

 =  >1  >>1

𝛽 = 0 ⇒ 𝐸 =
𝑞

4𝜋𝜀0

1

𝑟2

Ԧ𝑟

𝑟

𝜃 = 0 ⇒ 𝐸∥ = lim
𝛾→∞

𝑞

4𝜋𝜀0

1

𝛾2𝑟2

Ԧ𝑟

𝑟
= 0

𝜃 = /2 ⇒ 𝐸⊥ = lim
𝛾→∞

𝑞

4𝜋𝜀0

𝛾

𝑟2

Ԧ𝑟

𝑟
= ∞

Relativistic transforms of the fields from O’ to O



𝐵T = 𝐵𝜃

𝐸

𝐵𝑥 = 0

𝐵𝑦 = −𝑣𝐸𝑧/𝑐2

𝐵𝑧 = 𝑣𝐸𝑦/𝑐2

൞

𝐵𝑥 = 𝐵′
𝑥

𝐵𝑦 = 𝛾 𝐵′𝑦 − 𝑣𝐸′𝑧/𝑐2

𝐵𝑧 = 𝛾 𝐵′𝑧 + 𝑣𝐸′𝑦/𝑐2

𝛾 → ∞

𝐵⊥ =
Ԧ𝑣 × 𝐸

𝑐2

𝐵⊥ = 𝐵𝜃 =
𝑣𝐸𝑟

𝑐2
=

𝛽𝐸𝑟

𝑐

B is transverse to direction of motion
𝐵′ = 0

Magnetic field is “flattened” at high velocities, in the same way as electric field.  

Electric and magnetic fields around a relativistic charged particle are
“flattened” toward a plane perpendicular to the direction of motion of charged particle.  



Direct space charge
Self-fields

Unbunched beam of circular cross section (radius 𝑎) and uniform charge density moves with constant 
velocity 𝑣 =𝛽𝑐. It has a line charge density of λ＝𝜋𝑎2ρ, current density [A/m] of J=𝛽cρ, and total current 
of 𝐼 ＝𝛽𝑐λ. Using polar coordinates (𝑟, 𝜙), due to symmetry, electric field has a radial component (𝐸𝑟) 
and magnetic field lines are circles around the cylinder (𝐵𝜙 component only）

Both electric and magnetic fields vanish at 𝑟 =0 and increase linearly with 𝑟.

∇ ∙ 𝐸 =


𝜖0
ම ∇ ⋅ 𝐸 𝑑𝑉 = ඵ 𝐸 𝑑 Ԧ𝑆



𝜖0
𝜋𝑙𝑟2 = 𝐸𝑟2𝜋𝑙𝑟 𝐸𝑟 =

𝑟

2𝜖0
=

𝐼

2𝜋𝜖0𝛽𝑐

𝑟

𝑎2

∇ × 𝐵 = 𝜇0
Ԧ𝐽 ර 𝐵𝑑 Ԧ𝑠 = ඵ ∇ × 𝐵 𝑑 Ԧ𝑆

𝐵𝜙 2𝜋𝑟 = 𝜇0 𝛽𝑐 𝜋𝑟2

𝐵𝜙 =
𝐼

2𝜋𝜖0𝑐2

𝑟

𝑎2
𝐸𝑟 =

𝑐

𝛽
𝐵𝜙



Direct space charge Force

Magnetic force on test particle at r

These fields exert a force on a test particles at radius r

Force vector has a purely radial component.

While quadrupole is focusing in one and defocusing in 
the other plane, direct space charge leads to defocusing 
in both planes.

Ԧ𝐹 = 𝑒(𝐸 + [𝑣 × 𝐵])

𝐹𝑟 = 𝑒 𝐸𝑟 − 𝑣𝑠𝐵𝜙

𝐹𝑟 =
𝑒𝐼

2𝜋𝜖0𝛽𝑐
1 − 𝛽2

𝑟

𝑎2 =
𝑒𝐼

2𝜋𝜖0𝛽𝑐

1

𝛾2

𝑟

𝑎2

𝐹𝑥 =
𝑒𝐼

2𝜋𝜖0𝑐𝛽𝛾2𝑎2 𝑥, 𝐹𝑦 =
𝑒𝐼

2𝜋𝜖0𝑐𝛽𝛾2𝑎2 𝑦



Beam transport with space charge 

𝐾𝑆𝐶 𝑠 describes defocusing action of space charge.

Hill’s equation with space charge 

negative sign of space charge term, reducing overall focusing.

𝑥′′ + 𝐾 𝑠 𝑥 = 0

𝑥′′ + 𝐾 𝑠 + 𝐾𝑆𝐶 𝑠 𝑥 = 0

𝑥′′ =
𝑑2𝑥

𝑑𝑠2 =
1

𝛽2𝑐2

𝑑2𝑥

𝑑𝑡2 =
ሷ𝑥

𝛽2𝑐2 =
1

𝛽2𝑐2

𝐹𝑥

𝑚0𝛾
=

2𝑟0𝐼

𝑒𝑎2𝛽3𝛾3𝑐
𝑥, 𝑟0 = 𝑒2/(4𝜋𝜖0𝑚0𝑐2)

𝑥′′+ 𝐾 𝑠 −
2𝑟0𝐼

𝑒𝑎2𝛽3𝛾3𝑐
𝑥 = 0



Direct space charge in a synchrotron : 
Incoherent tune shift

Direct space charge leads to defocusing in either plane.

Beam will experience a lowering of their betatron tunes by 

It scales with1/3 

∆𝑄𝑥 =
1

4𝜋
න
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2𝜋𝑅
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න

0

2𝜋𝑅
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0
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(𝑎2

𝑥, 𝑦 𝑠 = 𝛽𝑥,𝑦 𝑠 ε𝑥,𝑦)



Direct space charge for a non-uniform beam
For a non-uniform distribution, bi-Gaussian density in the circular beam cross section

It is no longer linear in r, thus the defocusing becomes 
betatron-amplitude dependent

For small 𝑟 (near the beam center)

Resulting in small-amplitude (vertical) tune shift of

It is twice compared to a uniform beam of the same cross-sectional size and intensity.

95% emittance ε𝑦 = 42/𝑦
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The envelope equation
• Since we know the equation of motion for individual particles, we 
can work out the equation of motion for the beam distribution. 
The equation of motion for the rms beam size is known as the 
envelope equation:  

𝑘1 is the quadrupole focusing strength, σx is rms horizontal           
beam size:              and emittance x is given by:     

Similar equations apply for the vertical motion.

𝑑2
𝑦

𝑑𝑠2 + 𝑘1𝑦 −
ε2

𝑦

3
𝑦

−
𝐾

2(
𝑥
+

𝑦
)
 = 0  

𝑑2
𝑥

𝑑𝑠2 + 𝑘1𝑥 −
ε2

𝑥

3
𝑥

−
𝐾

2(
𝑥
+

𝑦
)
 = 0  



Envelope equation: continuous beam with 
elliptical symmetry

• Each term in the envelope equation has a clear physical origin

• k1σx represents the quadrupole focusing
• 2

x/σ
3
x represents the evolution of the beam size arising 

from the beam emittance (non-zero divergence)
• 𝐾/2(σx +σy) represents the defocusing effect of the space-charge forces

If the emittance term is much larger than the space-charge term, then the beam 
transport is said to be emittance dominated.

If the space-charge term is much larger than the emittance term, then the beam 
transport is said to be space-charge dominated.

𝑑2
𝑥

𝑑𝑠2 + 𝑘1𝑥 −
ε2

𝑥

3
𝑥

−
𝐾

2(
𝑥
+

𝑦
)
 = 0  



Space-charge tune shifts

• The defocusing effects of space-charge forces lead to 
changes in the betatron oscillation frequencies.

• For a continuous beam with uniform charge density, all 
particles experience the same frequency shifts.

• For a bunched beam the situation is more complicated: the 
space-charge forces are nonlinear, and depend on the 
longitudinal position of the particle in the bunch.



Incoherent space-charge tune shifts
• Consider the particles in a bunch in a storage ring. Although each particle 

within the bunch experiences a betatron frequency shift from space-charge 
forces, if we neglect interactions with the vacuum chamber, then the overall 
space-charge force on the bunch is zero.

• This kind of tune shift is sometimes called an incoherent tune shift: it 
cannot be measured by observing the coherent motion of a bunch of 
particles. 

• For particles in a bunch with non-uniform density, there is a  tune spread 
representing the range of tune shifts for different particles. The vertical 
tune spread can be estimated using the formula: 

Δν𝑦 = −
𝐾

4𝜋
∮

𝑑𝑠 𝑦

𝑦 (𝑥 + 𝑦)



TUNE SHIFT WITH WALL EFFECTS

• ‘Incoherent’ tune shift due to conductive walls
Beam, whose barycenter is halfway between two parallel conducting 
plates, gives rise to an infinite number of image line charges of 
alternating sign at positions 2h, 4h, 6h,....–2h ,–4h,....

First pair of image line charges, positioned at 2h, –2h, yields the vertical field at 
point y inside the beam generated by two images

nth pair of line charges, positioned at 2nh, –2nh

y

y
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TUNE SHIFT WITH WALL EFFECTS
Incoherent tune shift due to conductive walls

Between the parallel plates, there are no image charges, therefore ∇ ∙ 𝐸 = 0

Total incoherent tune shift of a round beam between parallel conducting walls

Electric image field is vertically defocusing, but horizontally focusing , the field is larger for 
small chamber height h.
Image effects decrease with 1/ , much slower than the direct space-charge term (1/3 ), and 
thus are of some concern for electron and high-energy proton machines.
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• a beam with line charge and radius performing coherent oscillations of 
its center of mass ҧ𝑥 inside the round beam pipe with radius ρ (𝑎 ≪ρ) . 
The displaced line charge λ induces surface charges on the inside of the 
beam pipe which can be represented by an image line charge - λ at 
distance b. 

TUNE SHIFT WITH WALL EFFECTS
coherent tune shift due to conductive walls

Image charge pulls the beam away from the center of 
the beam pipe: its effect is defocusing.

For symmetry reasons, vertical field and force are the same as the horizontal ones,

Coherent tune shift

𝐸𝑖𝑥 ҧ𝑥 =
𝜆

2𝜋𝜖0

1
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1
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1
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Laslett tune shifts

• In addition to direct forces between particles in a bunch, particles 
experience forces from image charges in the walls of the vacuum 
chamber.

• The forces from image charges depend on the geometry of the vacuum 
chamber, and the position of the bunch within the chamber.

• Tune shifts resulting from image charges are known as Laslett tune 
shifts

• In general, there will be coherent Laslett tune shifts as well as 
incoherent Laslett tune shifts



Touschek and intrabeam scattering  

• Particle longitudinal momentum outside momentum aperture 𝛾σx’> εacc  :      
the particles are lost. Touschek effect : one of the major particle loss mechanism 
in synchrotron light sources  → Touschek lifetime 

• Particle longitudinal momentum inside the momentum aperture 𝛾σx’> εacc  : 

intrabeam scattering excites particle oscillations: beam dimensions are increased  
and energy spread increases → IBS growth rates and equilibrium emittances

•These effects are a source of concern for the operation of ultra low emittance 
rings     -> can limit the performance of low emittance rings

Both Touschek effect and intrabeam scattering originate from electron-electron scattering in a 
bunch.   Scattering produces changes in the momenta of the electrons. 



TOUSCHEK EFFECT
• Coulomb scattering of charged particles traveling together causes an exchange 

of momentum between the transverse and longitudinal directions. 

• Due to relativistic effects, the momentum transferred from the transverse to the 
longitudinal direction is enhanced by the factor 𝛾. 

• For stored beam, particles are lost if their longitudinal momentum deviation 
exceeds the rf bucket or the momentum aperture determined by the lattice. 

•

• A particle with horizontal betatron amplitude ҧ𝑥 have a maximum horizontal 

velocity  𝑥’= 
ҧ𝑥


𝑥

= 
ҧ𝑥

λ
𝑥

= 
𝑝𝑥

𝑝

(𝑥 = ҧ𝑥 sin(s/x)= ҧ𝑥 sin(s/λx),  λx betatron wavelength)

• It corresponds to a transverse momentum 𝑝𝑥 = 𝑝 ҧ𝑥 /x   

• Consider machine with ҧ𝑥 =10-4 m, x =10 m, E=4 GeV.  Transverse momentum is 
40 keV.  When transferred into longitudinal direction, it becomes 
ΔE=px=313MeV,  ΔE/E=7.8% that is larger than energy acceptance



The effect can be investigated in CM system where the particles are non-relativistic.
Moller differential cross section

-In CMS, longitudinal component of the momentum due to scattering is  𝑝𝑠 = 𝑝 cos

-In Lab. system it becomes 𝑝′
𝑠 =  (𝑝𝑠 −


𝑐

𝐸) ∼ 𝑝𝑠 =  𝑝cos (particles are nonrelativistic in CMS)

Momentum transfer in Lab. System  is amplified by a factor by .  
If  𝑝𝑠 is larger than momentum acceptance Δ𝑝𝐴, scattered particles are lost.  

-Condition for losing particle is | cos| >
Δ𝑃

𝐴

𝑝
= μ

 = ׬
| cos  ≥ μ|

𝑑

TOUSCHEK EFFECT
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4𝑟0
2
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4

𝑠𝑖𝑛4
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3

𝑠𝑖𝑛2



TOUSCHEK EFFECT

• 𝜎𝑇 =
4𝑟0

2

𝑣/𝑐 4 0׬

cos−1 𝜇
sin 𝜓 𝑑𝜓 ∙ 2 0׬

𝜋
𝑑𝜙

4

1−sin2 𝜓 cos2 𝜙 2 −
3

1−sin2 𝜓 cos2 𝜙

       =
8𝜋𝑟0

2

𝑣/𝑐 4

1

𝜇2 − 1 + ln 𝜇       

εacc = dp / p0 : momentum acceptance  

Touschek lifetime of 3rd generation light sources decrease with the emittance as a 
consequence of the decrease bunch volume.

Touschek lifetime is increased by
- increasing momentum aperture 
- bunch lengthening cavities
- operation with large coupling
- high energy rings are favoured
- lower charge

(μ = cos)



Touschek lifetime

New upgrades will probe the new Touschek regime                     
MAX-IV –like (εacc= 4%; beta 5 m; 3 GeV; εx= 0.3 nm)  ξ~ 0.77 
PETRA IV –like (εacc= 3%; beta 5 m; 6 GeV; εx= 20 pm) ξ~ 1.6   

Lifetime increase for small emittance is clearly visible. 

3rd generation light sources operate in the region where D(ξ) is flat 
 (εacc = 3%, beta 10 m,  3 GeV,  εx = 3 nm)   : ξ~ 0.09

lower emittance → small transverse momentum σx’→ σx’ < εacc 

B. Podobedov, in LER14 (and PAC07)

S. C. Leemann et al., PRST-AB 12, 120701 (2009)

New 
Touschek 
regime

NSLS-II emittance (2 nm bare - 0.9 nm) still not in 
new Touschek regime mode. 
MAX IV emittance (330 pm bare - 200 pm) at the 
threshold of the new Touschek lifetime regime.

NSLS-II 
PDR 

MAX IV



Landau Cavities for Touschek lifetime

• Harmonic cavities are used to lengthen the bunch and have been used in many 
light sources (SLS, ELETTRA, BESSY, ALS, MAX IV, …).  

• Decreases charge density → bunch lengthening factors ~5 at MAX IV                                            
- Touschek lifetime increase by the same factor.                                                

• transient beam loading, fill pattern 

dependence and current dependence  

• Landau cavities are effective tool to reduce the 

emittance growth due to collective effects. 

An essential tool in low emittance lattices



PIWINSKI’S FORMULA
• Touschek lifetime can be defined by

No is number of particles in a bunch.  R is the total number of scattering events per unit time.

1

Ti
=  < 

𝑅

No
>



TOUSCHEK EFFECT

Intrabeam scattering



Intrabeam scattering



Hx = η2
x +2αxηxηpx + xη

2
px  

Intrabeam scattering
Intrabeam scattering analysis of measurements at KEK’s Accelerator Test Facility damping ring



Intrabeam scattering
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