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Equilibrium charge distribution in an electron 
storage ring

• We shall discuss how wake fields in a storage ring can change the 
longitudinal distribution (potential well distortion), or lead to a beam 
instability (microwave instability)

• In an electron storage ring, the combined effects of synchrotron 
radiation and longitudinal focusing (from the RF cavities) determine the 
longitudinal distribution of charge within individual bunches.

• Longitudinal wake fields can contribute to the change in energy of 
particles as a bunch moves around a storage ring. They may be strong 
enough to distort the equilibrium shape of the bunch (potential well 
distortion).

• Very strong wake fields can lead to an instability, in which the 
longitudinal charge distribution fails to reach equilibrium at all.



Equilibrium charge distribution in storage ring

• Averaged over one turn of the storage ring, the rate of change of the 
longitudinal co-ordinate 𝑧 (relative to a reference particle at the center of the 
bunch) is determined by momentum compaction factor 𝛼𝑝 and energy 
deviation 𝛿 = 𝐸 − 𝐸0 /𝐸0 of particle:

𝑑𝑧

𝑑𝑠
= −𝛼𝑝𝛿,  (𝑠 is longitudinal position along closed orbit)

Momentum compaction factor 𝛼𝑝 is determined by the optics :

𝛼𝑝 =
1

𝐶0
ර
𝜂𝑥
𝜌
𝑑𝑠

𝐶0 is circumference, 𝜂𝑥 is dispersion function, 𝜌 is radius of curvature of the 
closed orbit



Equilibrium charge distribution in storage ring

• The rate of change of the energy of the particle is given by the energy 
gain from RF cavities and the energy loss from synchrotron radiation

( VRF is rf voltage, E0 is beam energy, фs is synchronous phase, ω is the RF 
frequency, U is energy lost per turn through synchrotron radiation.)

If 𝑧 is small, the particle crosses the rf cavities close to the synchronous phase

(1) and (2) describe simple harmonic motion in longitudinal phase with 
angular frequency 𝜔𝑠

𝑒𝑉RF sin𝜙𝑠 = 𝑈.
𝑑𝛿

𝑑𝑠
=
𝑒𝑉RF
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𝑐
−

𝑈

𝐸0𝐶0
,

𝑑𝑧

𝑑𝑠
= −𝛼𝑝𝛿 (1),

𝑑𝛿

𝑑𝑠
= −

𝑒𝑉RF
𝐸0𝐶0

𝜔RF

𝑐
cos 𝜙𝑠 𝑧 (2).

𝜔𝑠
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𝑐2
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𝑐
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𝑑𝑠2
+
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2

𝑐2
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Equilibrium charge distribution in storage ring

Equations of motion can be obtained from a Hamiltonian

At low bunch charges, where  longitudinal wake fields are negligible, the 
longitudinal charge distribution is usually Gaussian.

peak value Ψ0 at 𝑧 = 𝛿 = 0

𝐻0 is a constant related to the rms energy spread:

𝐻 = −
1

2
𝛼𝑝𝛿

2 −
1
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=
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.

Ψ 𝑧, 𝛿 = Ψ0 exp
𝐻
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Effect of wake fields on the equilibrium charge distribution

For a particle of charge 𝑒 following a particle of charge 𝑁𝑒 through the 
beam line,  change in energy of the trailing particle is 

For a particle within a bunch, we have to sum the contributions from 
all the “slices” within the bunch ahead of the given particle

( 𝜆 𝑧 is the longitudinal charge density)

(𝜔𝑠 : synchrotron frequency in the absence of wakefields.)

Equations of motion

Δ𝛿 = −
𝑁𝑒2

𝐸0
𝑊∥ Δ𝑧 , (𝛿=

Δ𝐸

𝐸0
)
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න
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∞
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Effect of wake fields on the equilibrium charge distribution

Assuming that the particles again have a Gaussian momentum 
distribution, the charge density in longitudinal phase space

We can integrate both sides of (3) with respect to 𝛿, to 
obtain an integral equation for 𝜆 𝑧 , known as the 
Haissinski equation:

Constant λ0 is determined by the condition that the integral over 𝜆 𝑧 is equal to 
the total charge in the bunch,
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Example: potential well distortion in the ILC 
damping rings ( due to BPM )

• With the wake function, the equilibrium bunch profile can be found for 
different bunch charges by solving (numerically) the Haissinski equation

The solutions to the Haissinski equation (solid lines in center plot) can be compared with 
the results from particle tracking (dots). At high bunch charges, no equilibrium solution 
exists: the bunch is unstable.

The rms energy spread remains constant up to a bunch population of 3×1011 particles: if 
the population is increased beyond this point, the bunch becomes unstable (fails to reach 
an equilibrium).



Example: Potential Well Distortion in the KEK-
ATF Damping Ring

Calculated bunch distribution due to potential well distortion for    
various beam intensities in KEK-ATF damping ring 

KEK Preprint 98-21  Eun-San Kim 



Microwave instability

• We shall discuss how wakefields can lead to instability in the 
longitudinal phase space distribution of charge in individual bunches in 
a storage ring.

• “Microwave instability” is characterized by the appearance of structures 
within a bunch on a scale small compared to the overall bunch length.



Liouville’s theorem and the Vlasov equation

• To understand the behaviour of a bunch of particles that is not in equilibrium, we need an 
equation describing the dynamics of the charge distribution within the bunch. 

• An appropriate description is provided by the Vlasov equation, which may be “derived” 
from Liouville’s theorem. 

Single-bunch beam instabilities can be described by non-stationary solutions to the Vlasov equation.

• Let us consider the longitudinal phase space, with co-ordinate 𝜃 = 2𝜋𝑠/𝐶0 (where 𝐶0 is    
the circumference) and conjugate momentum 𝛿 (energy deviation of a particle)

𝜕Ψ

𝜕𝑠
+
𝑑𝜃

𝑑𝑠

𝜕Ψ

𝜕𝜃
+
𝑑𝛿

𝑑𝑠

𝜕Ψ

𝜕𝛿
= 0Liouville’s theorem



Perturbation approach to the Vlasov equation

Steps appropriate for an analysis of the microwave instability are as follows: 

1. Assume an initial phase space distribution of the form:  

: Ψ0 𝛿 is a stationary (equilibrium) distribution, and ΔΨ is amplitude of a         

density modulation with “wavelength ” 𝐶0/𝑛 and oscillation frequency 𝜔𝑛. 

2. Substitute the distribution into the Vlasov equation, and expand each term    

to first order in ΔΨ

3. Solve the resulting equation for frequency of oscillation of perturbation, 𝜔𝑛.

If there is a solution for 𝜔𝑛 with a positive imaginary part, then amplitude 
of the perturbation will grow exponentially : this indicates an instability.

Ψ 𝜃, 𝛿; 𝑡 = Ψ0 𝛿 + ΔΨ 𝑒𝑖 𝑛𝜃−𝜔𝑛𝑡



The dispersion relation

• The rate at which a particle moves around the ring depends on the 
momentum compaction factor αp and energy deviation of the particle 𝛿.  

• The change in energy of a particle resulting from the longitudinal wake 
fields is given by the convolution of the current spectrum with the 
longitudinal impedance.

• Let us assume that the charge distribution around the ring is described 
by a sinusoidal modulation, superposed on a uniform distribution.

Beam current observed at a point 𝜃 = 2𝜋𝑠/𝐶0 in the ring is given by 

• Change in energy of a particle in one revolution of the ring

𝑑𝜃

𝑑𝑠
= 𝜔 = 𝜔0 1 − 𝛼𝑝𝛿      (𝐶 = 𝐶0 1 + 𝛼𝑝𝛿 )

𝐼 𝜃, 𝑡 = 𝐼0 + Δ𝐼 𝑒𝑖 𝑛𝜃−𝜔𝑛𝑡 .

Δ𝐸 = −𝑒 Δ𝐼 𝑍∥ 𝜔𝑛 𝑒𝑖 𝑛𝜃−𝜔𝑛𝑡



The dispersion relation

If the beam distribution in phase space is normalized,

Then the amplitude of the current modulation is

The rate of change of the energy deviation is

We integrate both sides of this equation over 𝛿.

න
−∞

∞

Ψ0𝑑𝛿 = 1 ,

Δ𝐼 = 𝐼0න
−∞

∞

ΔΨ 𝑑𝛿 .

Δ𝐸 = −𝑍∥ 𝜔𝑛 𝑒𝐼0න
−∞
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ΔΨ 𝑑𝛿 𝑒𝑖 𝑛𝜃−𝜔𝑛𝑡

𝑑𝛿

𝑑𝑠
=

Δ𝐸

𝐶0𝐸0
= −𝑍∥ 𝜔𝑛

𝑒𝐼0
𝐶0𝐸0

න
−∞

∞

ΔΨ 𝑑𝛿 𝑒𝑖 𝑛𝜃−𝜔𝑛𝑡

𝜕Ψ

𝜕𝑠
+
𝑑𝜃

𝑑𝑠

𝜕Ψ

𝜕𝜃
+
𝑑𝛿

𝑑𝑠

𝜕Ψ

𝜕𝛿
= 0, Ψ 𝜃, 𝛿; 𝑡 = Ψ0 𝛿 + ΔΨ𝑒𝑖 𝑛𝜃−𝜔𝑛𝑡 .

ΔΨ = −𝑖𝑍∥ 𝜔𝑛

𝑐𝑒𝐼0
𝐶0𝐸0

න
−∞

∞

ΔΨ𝑑𝛿
𝜕Ψ0/𝜕𝛿

𝑛𝜔 − 𝜔𝑛

𝜔=𝜔0 1 − 𝛼𝑝𝛿1 = −𝑖𝑍∥ 𝜔𝑛

𝑐𝑒𝐼0
𝐶0𝐸0

න
−∞

∞ 𝜕Ψ0/𝜕𝛿

𝑛𝜔 − 𝜔𝑛
𝑑𝛿

(
𝜕Ψ

𝜕𝑡
+

𝑑𝜃

𝑑𝑡

𝜕Ψ

𝜕𝜃
+

𝑑𝛿

𝑑𝑡

𝜕Ψ

𝜕𝛿
= 0)

(
𝑑𝜃

𝑑𝑡
= 𝜔)



Dispersion relation

𝐼0 is the beam current, 𝐶0 is the  circumference, 𝐸0 is the beam energy, 𝜔 = 𝜔0 1 − 𝛼𝑝𝛿 is  revolution 

frequency, 𝛼𝑝 is momentum compaction factor  and 𝑍∥ 𝜔𝑛 is longitudinal impedance. 

Equation relates the wavelength of the density modulation (characterized by the “mode number” 𝑛) to 
the frequency of the modulation: it is known as the dispersion relation.

In practice, as a result of random fluctuations in the particle density, all modes will be present to some 
extent.  If there exists a mode n for which the frequency 𝜔𝑛 has a positive imaginary part, then the 
beam is likely to be unstable.

1 = −𝑖𝑍∥ 𝜔𝑛

𝑐𝑒𝐼0
𝐶0𝐸0

න
−∞

∞ 𝜕Ψ0/𝜕𝛿

𝑛𝜔 − 𝜔𝑛
𝑑𝛿

Because we have retained terms in the Vlasov equation only up to first order in the perturbation ∆Ψ, 
the dispersion relation can only give an indication of whether the beam is stable or not: it cannot be 
used to describe the behaviour of the beam if an instability is present.



Example 1:   “cold” beam

• Consider the case of a “cold” beam, i.e. a beam with zero energy spread.

• Energy spread is described by a Dirac delta function: the energy distribution 
function Ψ0 𝛿 is zero, except for 𝛿 = 0. Integrating by parts, and using   
𝜔 = 𝜔0 1 − 𝛼𝑝𝛿

There is always a solution for 𝜔𝑛 with positive imaginary part unless impedance is a purely 
imaginary number.

Hence, a beam with zero energy spread will always be unstable in the presence of any 
longitudinal impedance.

න
−∞

∞ 𝜕Ψ0/𝜕𝛿

𝑛𝜔 − 𝜔𝑛
𝑑𝛿 = න

−∞

∞ Ψ0

𝑛𝜔 − 𝜔𝑛
2 𝑛

𝜕𝜔

𝜕𝛿
𝑑𝛿 = −

𝑛𝜔0𝛼𝑝
𝑛𝜔 − 𝜔𝑛

2 ,

𝑛𝜔0 −𝜔𝑛
2 = 𝑖𝑍∥ 𝜔𝑛

𝐼0
𝐸0/𝑒

𝑛𝜔0
2𝛼𝑝
2𝜋

,

𝜔𝑛

𝑛𝜔0
= 1 ± 𝑖

𝑍∥ 𝜔𝑛

𝑛

𝐼0
𝐸0/𝑒

𝛼𝑝
2𝜋

(Ψ0(𝛿)= 𝛿(𝛿))



Landau damping

• In practice, there are some spread in energy for the particles in a storage ring. 

• Combined with the (non-zero) momentum compaction of the lattice, the 
energy spread will lead to a range in revolution frequency for the particles in 
the beam.

• The spread in revolution frequencies means that any density modulation will 
tend to get “smeared out”, leading to a reduction in the amplitude of the 
density modulation.

• If the rate of reduction in amplitude of the density modulation is sufficient to 
suppress the growth in amplitude from the impedance, then the beam will be 
stable.

• The suppression of the beam instability arising from the spread in energy of 
particles in the beam is known as “Landau damping”



Example 2: a beam with a Gaussian energy spread

• As an example of the effect of Landau damping, let us consider the 
case of a beam with Gaussian energy spread

We are only really interested in whether the beam is stable or not, and 
this can be determined from the imaginary part of 𝜔𝑛; and hence, from 
the imaginary part of Δ𝑛

Ψ0 =
𝑒−𝛿

2/2𝜎𝛿
2

2𝜋𝜎𝛿

from 𝛿 to 𝜁 = 𝛿/𝜎𝛿

1 = −𝑖𝑍∥ 𝜔𝑛

𝑐𝑒𝐼0
𝐶0𝐸0

න
−∞

∞ 𝜕Ψ0/𝜕𝛿

𝑛𝜔 − 𝜔𝑛
𝑑𝛿

Δ𝑛 =
𝜔𝑛 − 𝑛𝜔0

𝑛𝜔0𝛼𝑝𝜎𝛿
1 = 𝑖

𝑍∥ 𝜔𝑛

𝑛

𝐼0

2𝜋 3/2 𝐸0/𝑒 𝛼𝑝𝜎𝛿
2න

−∞

∞ 𝜁𝑒−𝜁
2/2

𝜁 + Δ𝑛
𝑑𝜁,



Example 2: a beam with a Gaussian energy spread

• As an example, consider the case of a storage ring with a broad-band 
impedance, with characteristic frequency 𝜔𝑟

𝑍∥ 𝜔 = 𝑍∥ 𝜔𝑟

1 − 𝑖
𝜔2 −𝜔𝑟

2

𝜔𝑟𝜔

1 +
𝜔2 −𝜔𝑟

2 2

𝜔𝑟
2𝜔2

To apply the dispersion relation to determine the stability of the beam,   
we write the dispersion relation in the form

𝐹 𝑛 = 𝑈 + 𝑖𝑉, 1 = 𝑖𝐹(𝑛)න
−∞

∞ 𝜁𝑒−𝜁
2/2

𝜁 + Δ𝑛
𝑑𝜁

𝐹 𝑛 =
𝑍∥ 𝜔𝑛

𝑛

𝐼0

2𝜋 3/2 𝐸0/𝑒 𝛼𝑝𝜎𝛿
2 𝑈 + 𝑖𝑉 = 𝑖 න

−∞

∞ 𝜁𝑒−𝜁
2/2

𝜁 + Δ𝑛
𝑑𝜁

−1



Example 2: a beam with a Gaussian energy spread

𝑈 + 𝑖𝑉 = 𝑖 ∞−׬
∞ 𝜁𝑒−𝜁

2/2

𝜁+Δ𝑛
𝑑𝜁

−1

 

If we consider the case that Im(Δ𝑛) >> 0 (i.e. Δ𝑛 has a very large 
positive part), U + iV will be a large real number, i.e. V will be 
close to zero and U will be very large. It is outside area 
enclosed by the black curve in the plot. 

The case U = V =0 (i.e. at the center of the plot, inside the 
black curve) can only occur in the limit of low beam current 
or zero impedance: in that case,  the beam has to be 
stable. So the stable region is inside the black curve (and 
has Im(Δ𝑛) < 0)

If we make the approximation, for a broadband impedance: 
𝑍(𝜔𝑛 ) ~ 𝑍(n𝜔𝑜), then the red curve is close to U + iV for 
different values of n. So the red and black curves touch 
when U ~ 𝜋/6 𝐹 𝑛 =

𝑍∥ 𝜔𝑛

𝑛

𝐼0

2𝜋 3/2 𝐸0/𝑒 𝛼𝑝𝜎𝛿
2~

𝜋

6

plot 𝐹 𝑛 for a range of values
of n (red curve),and 𝑈 + 𝑖𝑉 for a range of 
real values of ∆n (black curve).



Example 2: a beam with a Gaussian energy spread

The instability threshold corresponds to the condition

This represents the maximum current that can be injected into the 
storage ring while maintaining beam stability. We see that we can raise 
the instability threshold by:

• increasing the momentum compaction factor or the energy spread: 
this increases the rate of Landau damping;

• increasing the beam energy : this increases the beam rigidity;
• reducing the impedance

𝐼0 =
𝜋2 2𝜋

3
𝛼𝑝𝜎𝛿

2 𝐸0/𝑒

𝑍∥ 𝜔𝑟 /𝑛
.   (𝜔𝑛 = 𝑛𝜔0 = 𝜔𝑟)



Application to bunched beams

In applying the stability criterion to a bunched beam, we should replace the average current I0
by the peak current መ𝐼, which for a Gaussian bunch is:

For bunched beams, the stability criterion can be written (as a limit on the impedance)

A further commonly used approximation is to replace the stability boundary 
obtained from Im(∆n) = 0 (black curve ) with a circle of radius 1/√2π (red curve)

The stability criterion for coasting beams
Keil–Schnell criterion

For bunched beams, the stability criterion is
Keil–Schnell–Boussard criterion

average current I0 by the peak current 

መ𝐼 =
𝑒𝑐𝑁0

2𝜋𝜎𝑧
,

𝑍∥ 𝜔𝑟

𝑛
<
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6
𝑍0

𝛾𝛼𝑝𝜎𝛿
2𝜎𝑧

𝑟𝑒𝑁0
,

𝐹 𝑛 =
𝑍∥ 𝜔𝑛

𝑛

𝐼0

2𝜋 3/2 𝐸0/𝑒 𝛼𝑝𝜎𝛿
2 < 1/√2π

𝑍∥ 𝜔𝑟

𝑛
<

𝜋

2
𝑍0

𝛾𝛼𝑝𝜎𝛿
2𝜎𝑧

𝑟𝑒𝑁0
,

𝑍∥ 𝜔𝑟

𝑛
< 2𝜋

𝐸0/𝑒

𝐼0
𝛼0𝜎𝛿

2,



Characteristics of  microwave instability

• The type of instability that we have described often appears as a 
modulation in charge density within individual bunches in a storage 
ring, on a length scale of order of a millimeter. 

• The charge density modulation can lead to the emission of detectable 
microwave radiation: the instability is therefore often known as the 
“microwave instability”.

• Since our analysis is based on linearizing the Vlasov equation (i.e. 
keeping terms only up to first order in the density modulation ∆Ψ), we 
can only estimate the threshold of the instability: we cannot describe 
how the beam behaves above threshold.



Characteristics of microwave instability

• Further theoretical analysis, together with numerical modelling and 
experimental studies, indicate that above the instability threshold there 
is an increase in beam energy spread following a 1/3 power law:  

σδ,0 is the natural energy spread, N0 is the bunch population and Nth is    

bunch population at the instability threshold.

• The increase in energy spread leads to an increase in the bunch length.

• The microwave instability is also known as “turbulent bunch lengthening”

𝜎𝛿 = 𝜎𝛿,0 + 𝑘 𝑁0 −𝑁th
1
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Summary : Potential well distortion

• In an electron storage ring in the absence of wake fields,  beam generally 
has a Gaussian distribution in longitudinal phase space.

• Wake fields can drive beam instabilities; but at low currents (below 
instability threshold) beam distribution can still reach an equilibrium.

• Below instability threshold, longitudinal wake fields have little impact on 
the energy spread, but the longitudinal charge profile within a bunch can 
be changed: this effect is known as potential well distortion.

• The equilibrium charge profile in the presence of longitudinal wake fields  
is described by the Haissinski equation.



Summary : Microwave instability
• At high bunch currents, short-range wake fields drive beam instabilities 

where the charge within the bunch fails to reach an equilibrium.

• The dynamics of the charge distribution in longitudinal phase space for a 
single bunch is described by the Vlasov equation.

• With some approximations and assumptions, it is possible to find a 
solution to the Vlasov equation that relates the frequency of a small 
modulation on the charge density to the wavelength of the modulation: 
the equation describing this relationship is known as the dispersion 
relation.

• The stability of a modulation of given wavelength is determined by the 
imaginary part of the oscillation frequency of the modulation, which can 
be found from the dispersion relation.



Summary : Microwave instability

• A “cold” beam (with zero energy spread) is always unstable in 
the presence of longitudinal wake fields.

• When the energy spread is non-zero, the effects of 
momentum compaction leads to particles moving round the 
ring at different rates, depending on their energy deviation.

• As a result, with non-zero energy spread (and non-zero 
momentum compaction) any modulation in charge density 
tends to get “smeared out”, suppressing the development of 
a beam instability: this process is known as Landau damping.
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