Potential-well distortion

Microwave instability
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Equilibrium charge distribution in an electron
storage ring

« We shall discuss how wake fields in a storage ring can change the
longitudinal distribution (potential well distortion), or lead to a beam
instability (microwave instability)

* In an electron storage ring, the combined effects of synchrotron
radiation and longitudinal focusing (from the RF cavities) determine the
ongitudinal distribution of charge within individual bunches.

 Longitudinal wake fields can contribute to the change in energy of
particles as a bunch moves around a storage ring. They may be strong
enough to distort the equilibrium shape of the bunch (potential well
distortion).

« Very strong wake fields can lead to an instability, in which the
longitudinal charge distribution fails to reach equilibrium at all.




Equilibrium charge distribution in storage ring

« Averaged over one turn of the storage ring, the rate of change of the
longitudinal co-ordinate z (relative to a reference particle at the center of the
bunch) is determined by momentum compaction factor a,, and energy
deviation § = (E — E,)/E, of particle:

dz

— = —a,0} (s is longitudinal position along closed orbit)

Momentum compaction factor a,, is determined by the optics :
a, = - fﬂx ds
PGt p

C, Is circumference, n, is dispersion function, p is radius of curvature of the
closed orbit




Equilibrium charge distribution in storage ring

« The rate of change of the energy of the particle is given by the energy
gain from RF cavities and the energy loss from synchrotron radiation

d5 _ eVRF Sin( _ C‘)RFZ) _ U
ds E,C, > c E,Cy’

( Vg is rf voltage, E, is beam energy, ¢, is synchronous phase, w is the RF
frequency, U is energy lost per turn through synchrotron radiation.)

elVrrsin ¢, = U.

If z is small, the particle crosses the rf cavities close to the synchronous phase

dZ d5 eVRF WRF
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(1) and (2) describe simple harmonic motion in longitudinal phase with

angular frequency w, ,
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Equilibrium charge distribution in storage ring

Equations of motion can be obtained from a Hamiltonian
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At low bunch charges, where longitudinal wake fields are negligible, the

longitudinal charge distribution is usually Gaussian.
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H, is a constant related to the rms energy spread:
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Effect of wake fields on the equilibrium charge distribution

For a particle of charge e following a particle of charge Ne through the
beam line, change in energy of the trailing particle is

Ne? AE

For a particle within a bunch, we have to sum the contributions from
all the “slices” within the bunch ahead of the given particle

e co
A6(z) = ——f Az")W,(z —z")dz’',
EyJ,
(A(2) is the longitudinal charge density)

Equations of motion {4

E = —(Xp5,
ds§  wé e

E—apczz—EOCOfZ Az"YW,(z —z")dz',

(ws : synchrotron frequency in the absence of wakefields.)




Effect of wake fields on the equilibrium charge distribution
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Assuming that the particles again have a Gaussian momentum
distribution, the charge density in longitudinal phase space

Y(z,6) =Y i =Y i Zz+ - sz’food AW, (2’ ") (3
z,0) = Wyexp o= 0€EXP 207 exp 202 ap0§EoCo i Z y z Az 1z —z (3)

> We can integrate both sides of (3) with respect to 6, to
Mz) = f ¥(z,8)dd, | optain an integral equation for A(z), known as the
— Haissinski equation:

z? e z *
A(z) = Agexp (— >+ > f dz’f dz"A(z" YW (z" — Z”)),
ZO-Z C(p0'6 E()CO 0 71
Constant A, is determined by the condition that the integral over A(z) is equal to
the total charge in the bunch, o
j A(z)dz = Ne,




Example: potential well distortion in the ILC
damping rings ( due to BPM )

« With the wake function, the equilibrium bunch profile can be found for
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The solutions to the Haissinski equation (solid lines in center plot) can be compared with

the results from particle tracking (dots). At high bunch charges, no equilibrium solution
exists: the bunch is unstable.

The rms energy spread remains constant up to a bunch population of 3x10'" particles: if

an equilibrium).

the population is increased beyond this point, the bunch becomes unstable (fails to reach




Example: Potential Well Distortion in the KEK-
ATF Damping Ring
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Calculated bunch distribution due to potential well distortion for
various beam intensities in KEK-ATF damping ring

KEK Preprint 98-21 Eun-San Kim



Microwave instability

« We shall discuss how wakefields can lead to instability in the
longitudinal phase space distribution of charge in individual bunches in
a storage ring.

« “Microwave instability” is characterized by the appearance of structures
within a bunch on a scale small compared to the overall bunch length.

Current in Amps.

Observation of single-bunch
longitudinal instability in the
Los Alamos PSR, caused by
an inductive impedance.

From C. Beltran, A.A. Browman
and R.J. Macek, “Calculations and
observations of the longitudinal
instability caused by the ferrite
inductors at the Los Alamos Proton
Storage Ring"”, Proceedings of the
2003 Particle Accelerator
Conference, Portland, Oregon.



Liouville’s theorem and the Vlasov equation

e To understand the behaviour of a bunch of particles that is not in equilibrium, we need an
equation describing the dynamics of the charge distribution within the bunch.

e An appropriate description is provided by the Vlasov equation, which may be “derived”
from Liouville's theorem.

e Let us consider the longitudinal phase space, with co-ordinate 6 = 2ns/C, (where C, Is
the circumference) and conjugate momentum & (energy deviation of a particle)

OLP do OLP doo¥
ds dS 00 dS 5

Liouville’s theorem

Single-bunch beam instabilities can be described by non-stationary solutions to the Vlasov equation.




Perturbation approach to the Vlasov equation

Steps appropriate for an analysis of the microwave instability are as follows:
1. Assume an initial phase space distribution of the form:

W(O,5:t) = Wo(8) + AW e!(m0-wnt)
: W, (6) is a stationary (equilibrium) distribution, and AW is amplitude of a
density modulation with “wavelength ” C,/n and oscillation frequency w,,.

2. Substitute the distribution into the Vlasov equation, and expand each term
to first order in AW

3. Solve the resulting equation for frequency of oscillation of perturbation, w,.

If there is a solution for w,, with a positive imaginary part, then amplitude
of the perturbation will grow exponentially : this indicates an instability.



The dispersion relation

* The rate at which a particle moves around the ring depends on the
momentum compaction factor o, and energy deviation of the particle 6.

% = W = wo(l —_ ap6) (C p— CO (1 + ap5))

* The change in energy of a particle resulting from the longitudinal wake
fields is given by the convolution of the current spectrum with the
longitudinal impedance.

* Let us assume that the charge distribution around the ring is described
by a sinusoidal modulation, superposed on a uniform distribution.

Beam current observed at a point 8 = 2ns/Cy In the ring is given by
[(0,t) = Iy + Al ei(n0~@nl),

e Change in energy of a particle in one revolution of the ring
AE = —e Al Zy(w,,) e""09—“nt)




The dispersion relation

If the beam distribution in phase space is normalized, f Wods =1,

Then the amplitude of the current modulation is ar =10joomp ds.

The rate of change of the energy deviation is
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We integrate both sides of this equation over §.
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Dispersion relation

cely (* 0W,/06
CoEp J_o (N — wy,)

1=-iZ(wp) =—=

Iy is the beam current, C, is the circumference, E, is the beam energy, o = wq(1 — apcS) Is revolution
frequency, a;, is momentum compaction factor and Z;(w,) is longitudinal impedance.

Equation relates the wavelength of the density modulation (characterized by the "“mode number” n) to
the frequency of the modulation: it is known as the dispersion relation.

In practice, as a result of random fluctuations in the particle density, all modes will be present to some

extent. If there exists a mode n for which the frequency w,, has a positive imaginary part, then the
beam is likely to be unstable.

Because we have retained terms in the Vlasov equation only up to first order in the perturbation AW,

the dispersion relation can only give an indication of whether the beam is stable or not: it cannot be
used to describe the behaviour of the beam if an instability is present.



Example 1: “cold” beam

« Consider the case of a “cold” beam, i.e. a beam with zero energy spread.

« Energy spread is described by a Dirac delta function: the energy distribution

function ¥, (&) is zero, except for § = 0. Integrating by parts, and using
w = wo(l — ap5)

© 0¥,/08 I8 = j"o Y, dw 15 = nwoa,
=) ) =02 98 T (w — wp)?’ (Wo(6)= 5(5))
, . Iy, nwia,
(nwy — wp)* = iZ)(wy) Eoje 21 '
Wn _ 14 l_Z”(a)n) Iy a
nwy n Ey/e2n

There is always a solution for w,, with positive imaginary part unless impedance is a purely
iImaginary number.

Hence, a beam with zero energy spread will always be unstable in the presence of any
longitudinal impedance.



Landau damping

* In practice, there are some spread in energy for the particles in a storage ring.

« Combined with the (non-zero) momentum compaction of the lattice, the
energy spread will lead to a range in revolution frequency for the particles in
the beam.

« The spread in revolution frequencies means that any density modulation will
tend to get “smeared out”, leading to a reduction in the amplitude of the
density modulation.

* If the rate of reduction in amplitude of the density modulation is sufficient to
suppress the growth in amplitude from the impedance, then the beam will be
stable.

» The suppression of the beam instability arising from the spread in energy of
particles in the beam is known as "Landau damping”




Example 2: a beam with a Gaussian energy spread

« As an example of the effect of Landau damping, let us consider the
case of a beam with Gaussian energy spread

_52 2
w = /295 o j°° oW, /06
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from 6 to { = §/0;5

_ Zy(wn) I » ge=C/2 Wy, — Ty

dd, A, =
n (271)3/2(E0/e)ap0§ o (T A, ¢ " NWodp0os

We are only really interested in whether the beam is stable or not, and
this can be determined from the imaginary part of w,; and hence, from
the imaginary part of A,




Example 2: a beam with a Gaussian energy spread

To apply the dispersion relation to determine the stability of the beam,
we write the dispersion relation in the form

o0 68_62/2
F(n) =U+1iV, 1=iF(n)f &Y dq
_ Zy(wn) Io A
F(n) = n @) (Byfe)ayo? U+iV = <l e d()

« As an example, consider the case of a storage ring with a broad-band

iImpedance, with characteristic frequency w,
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Example 2: a beam with a Gaussian energy spread

-1
[0'e) _62/2
U+iV = (i f_oozzw d() | *

If we consider the case that Im(A,) >> 0 (i.e. A, has avery large
positive part), U +iV will be a large real number, i.e. V will be

close to zero and U will be very large. It is outside area g ! L/
enclosed by the black curve in the plot. " | /,?’
/

The case U =V =0 (i.e. at the center of the plot, inside the /
black curve) can only occur in the limit of low beam current T,
or zero impedance: in that case, the beam has to be plot F(n) for a range of values
stable. So the stable regionis inside the black curve (and of n (red curve),and U + iV for a range of
has Im(4,) <0) real values of An (black curve).
If we make the approximation, for a broadband impedance:
Z(w, )~ Z(hw,), then the red curve is close to U +iV for
different values of n. So the red and black curves touch

Z” (a)n) IO T
when U ~ /6 F(n) = ~—

n  (2n)3/2(Ey/e)a,of 6



Example 2: a beam with a Gaussian energy spread

The instability threshold corresponds to the condition

T2+\/21 Eq/e
a,0% ofe__
3 Z” (wr)/n

[y = (wp, = Nwy = wy)

This represents the maximum current that can be injected into the

storage ring while maintaining beam stability. We see that we can raise
the instability threshold by:

e increasing the momentum compaction factor or the energy spread:
this increases the rate of Landau damping;

* increasing the beam energy : this increases the beam rigidity;
 reducing the impedance



Application to bunched beams
In applying the stability criterion to a bunched beam, we should replace the average current |,
by the peak current I, which for a Gaussian bunch is:

ecN,

V2mao, '

[=
For bunched beams, the stability criterion can be written (as a limit on the impedance)

2
Zy(w,) - % ya,o50,

>
n 6 ° N, '
A further commonly used approximation is to replace the stability boundary

obtained from Im(An) = 0 (black curve ) with a circle of radius 1/V21t (red curve)
Z
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The stability criterion for coasting beams n Iy
Zy(w,) T _ YQy050;,
For bunched beams, the stability criterion is 1 < EZO

average current |, by the peak current



Characteristics of microwave instability

* The type of instability that we have described often appears as a
modulation in charge density within individual bunches in a storage
ring, on a length scale of order of a millimeter.

« The charge density modulation can lead to the emission of detectable
microwave radiation: the instability is therefore often known as the
“microwave instability”.

» Since our analysis is based on linearizing the Vlasov equation (i.e.
keeping terms only up to first order in the density modulation AW), we
can only estimate the threshold of the instability: we cannot describe
how the beam behaves above threshold.



Characteristics of microwave instability

 Further theoretical analysis, together with numerical modelling and
experimental studies, indicate that above the instability threshold there
IS an increase in beam energy spread following a 1/3 power law:
1
05 = 05,0 + k(Ng — Nip)3,

Os0 IS the natural energy spread, Ny is the bunch population and Ny, is
bunch population at the instability threshold.

« The increase in energy spread leads to an increase in the bunch length.

« The microwave instability is also known as “turbulent bunch lengthening”



Summary : Potential well distortion

* In an electron storage ring in the absence of wake fields, beam generally
has a Gaussian distribution in longitudinal phase space.

« Wake fields can drive beam instabilities; but at low currents (below
instability threshold) beam distribution can still reach an equilibrium.

- Below instability threshold, longitudinal wake fields have little impact on
the energy spread, but the longitudinal charge proftile within a bunch can
be changéd: this effect is known as potential’ well distortion.

« The equilibrium charge profile in the presence of longitudinal wake fields
Is described by the Haissinski equation.




Summary : Microwave instability

At high bunch currents, short-range wake fields drive beam instabilities
where the charge within the bunch Talls to reach an equilibrium.

« The dynamics of the charge distribution in longitudinal phase space for a
single”bunch is described™y the Vlasov equation.

« With some approximations and assumptions, it is possible to find a
solution to the Vlasov equation that relates the frecwenc of a small
modulation on the _charge density to the wavelength of the modulation:

thle tequation describingthis relationship is known as the dispersion
relation.

 The stability of a modulation of given wavelength is determined by the
iImaginary part of the oscillation Trequency of the modulation, which can
be found from the dispersion relation.



Summary : Microwave instability

* A “cold” beam (with zero energy spread) is always unstable in
the presence of longitudinal wake fields.

« When the energy spread is non-zero, the effects of
momentum compaction leads to particles moving round the
ring at different rates, depending on their energy deviation.

 As a result, with non-zero energy spread (and non-zero
momentum compaction) any modulation in charge density
tends to get “smeared out”, suppressing the development of
a beam instability: this process is known as Landau damping.
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