Coupled-Bunch Instabilities



Reference

« Andy Wolski, Classical coupled-bunch instabilities, USPAS
2007

« A. Chao, Physics of collective beam instabilities in high
energy accelerator, 1993



Wake fields and wake functions

* Fields generated by the head of a bunch can act back on particles at
the tail, modifying their dynamics and driving instabilities.

* The electromagnetic fields generated by a particle or a bunch of

particles moving through a vacuum chamber are usually described as
wake fields.

- The wake function gives the effect of a leading particle on a following
particle, as a function of the longitudinal distance between the two

particles.



Longitudinal and transverse wake functions

« Change in energy of particle B from the wake field of particle A when the
particles move through a given accelerator component, is:

Te ,
Abp = — ?NAVVII(Z_Z)

W, is the wake function of the component, eN, is the charge of particle A
v is the relativistic factor, r, is the classical electron radius

" Transverse deflection of a following bunch

r !/
Apyp = — ?BNA yaW,(z—2)

y,. transverse offset of the leading bunch

W, : transverse wake function



Example: resistive-wall long-range wake functions

 Consider the case of a vacuum chamber with conductivity o, length £, and
circular cross-section of radius 6. Resistive-wall wake fields have both
short-range and a long-range effects.

3(2b?
For the parameter regime: —Z =2 /ZO_O'
Wi(z) = 1 4t ¢ L (MKS)
longitudinal wake function : )= 9nb |Zgcov—73
. Wi (2) = 2 4t ¢ L (MKS)
transverse wake function : W)= TS [ Zoco—z

Aluminium has an electrical conductivity () of 3.7x107 Q' 'm-';
so for a beam pipe of radius 1 cm, the range of validity of these expressions is -z >20 um.
they should be safe for studies of multi-bunch effects.



Equation of motion for betatron oscillations

In the absence of any wake fields, the equation of motion for the nt
bunch in a storage ring can be written:

. w
Yn +wzﬁ Yn="0 yn”+(—ﬁ)2yn=0

2T Vg
betatron frequency as: wg = 7
0

, Vg Is the betatron tune. We can add the transverse forces from the
wake fields as driving terms on the right-hand side of the equation of
motion.



Equation of motion with wake fields

If W (z) represents the wake function over the entire circumference,
transverse deflection of the nt" bunch over one turn can be obtained by
summing the wake fields over all bunches over all previous turns:

dpyn 1
oy o=t E E w - — kTy —
1t c Toy 0 L (—kC C))’m(t kT,
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Ring is uniformly filled with M equally—spaced bunches, each with a total of N,
particles.

The sum over k represents a sum over multiple turns; the sum over m
represents a sum over all the bunches in the ring.

For ultra-relativistic motion, wake function obeys W, (z) =0ifz > 0



Equation of motion with wake fields

Including the wake fields, the equation of motion for betatron oscillations
can be written:

M-1
) , cr, m-—n m-—n
Vn TR Yy = —mNo 2 2 WJ_(_kC_TC)ym(t_kTO_ M To)
kK m=0

We find the behaviour of all the bunches in the ring, in the presence of the
long-range wake fields represented by the wake function W . We shall try a
solution of the form:

n
v, (t) o« exp(2mi Mﬁ)exp(—i!)t)

This solution describes the behaviour of a “mode” consisting of a particular pattern of
transverse bunch positions, and oscillating with a particular frequency. The frequency of a
mode y is represented by Q, ; imaginary part of Q, gives the growth (or damping) rate of
the corresponding mode.
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Coupled bunch modes
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The mode number u gives the phase advance between the
betatron position of one bunch and the next.

Each bunch performs oscillations with frequency 2, as it
moves around the ring.

Because the bunches are coupled by the wake fields, the
betatron frequency is shifted from the “nominal” frequency
wg ; the frequency in the presence of the wake fields

depends on the mode number.

The real part of 2, _- wp gives the coherent frequency shift;
the imaginary part of 2, - wg gives the exponential growth
or damping rate for the mode.




Equation of motion with wake fields

n
(—N% + wﬁz) exp(2mi 'u—)ex'p(—i[)t)
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T, exp 27n M) W, (—=kC 7, C)exp(l 0(k+

)

2

[f mode frequency is close to betatron frequency, 2 = wg  (wg = w, Vg)
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Solution of the equation of motion with wake fields

Observe that the factor in square brackets is effectively the Fourier
transform of wake function. We define the impedance Z, corresponding
to the wake field as the Fourier transform of the wake function:

.Z()C *° _i% dZ
ZJ_((U) = lEJ_OO WJ_(Z)B c ?

Zoc 1 (7 WY
W,(z) =—i—— Z (w)e ¢ dw

4 21 J_,



Solution of the equation of motion with wake fields

From the definition of the impedance

2 J_( kC — C)QZTCLVﬁR

m-—n .
——— deZl(w) exp(— l—(kC+ C))e?mvpk

(wp= w, Vg
4t 1

m—n
_l%%j deZl(a)) exp(—i(w — wg)Tok) exp(— l— Y

m-—n
= —]—— da) Z Z)(w+ wglexp(—iwTok) exp(—i(w + wg)( v, )Ty)



Solution of the equation of motion with wake fields

 Note that we can write the summation over k in terms of a Dirac delta
function:

0.0)

Y= 3 s(ger) (3 oemamws 3 gem

Then we can perform the integral over w

m —n .
Z WJ_(—kC . T C)eZTL'lVBk
k=0

o~

da) Z Z)(w+ wg)exp(—iwTok) exp(—i(w + wﬁ)(%)To)

~i(prwo+wp) (F3r-To) (0 = p'wg)

—1 __Zgojolz—oo ZJ_(p’wO + wﬁ)e



Solution of the equation of motion with wake fields

‘Qﬂ — wg
. _Te€ No 4m 1 2 —i(prwo+w ) (o g) 1, 2mi(putvg) T
~ — R Z / + 0 15 M 'O e HTVp M
14-7'[1/'3 Y O[ZOCTO 1(p'wy wﬁ)e ]
m= pr=—oo

(To=21/wy)

oo

M-1
4t 1,c Ny 1 2 \ : \ 2 (pr—p) (T
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lZOC drtvg v Ty L(prwo +wp)e
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We observe that, for large M, the summation over m vanishes, unless:

M-1

p' — u =pM (pis an integer) z o ~2Mi - CED _ y
m=0
M-1
. M—N
p' —u * pM, Ze_z’”(M)=O

m=0



Solution of the equation of motion with wake fields

4w MNgyr,c
lZOC dmtyvgTy

0, —wpg = — 2 Z,[(PM + p)wg + wg]

pl:—OO

(), gives the frequency of a bunch in the case that the bunches are arranged
in a mode u:

. un .
vt (t) < exp(2mi M)exp(—l.(lut)

« We see that associated with long-range wake field, there are two effects:

 a frequency shift of coherent betatron oscillations, given by the
imaginary (“reactive”) part of the impedance

« an exponential growth or damping of the betatron oscillations, given
by the real (“resistive”) part of the impedance.



Solution of the equation of motion with wake fields

Note that we evaluate the impedance at frequencies: (pM + w)w, + wg

This can be understood in terms of the beam spectrum. At a fixed point in the
ring, the beam signal looks like

co

beam signal « Z Z vt () 6(t — kTy +— TO)

k=—o00 n=

yt(t) < exp (Zni %) exp(—i.(lﬂt) ~ exp (Zm' ﬁ) exp(—ia)[;t): exp (i(Znu% — a)ﬁt))

The beam spectrum is the Fourier transform of the signal
o M-1

spectrum « j z z Znﬂﬁ_wﬁ ) O(t —kTy +— T o) et@tdt

k=—00 n=



Solution of the equation of motion with wake fields

oo M-1
spectrum z ei(w—w[;)kTO z ei(Znu%—(w—wﬁ)%To)
k=—o00 n=0 o0 %0
Z el(w=wp)kTo — ¢ Z §(w — wg — powo)
k=—oo i
w M-1

i2nu£ —i(a)—a) )n—TO
spectrum < w, z z e Me BM 6(a)—a)3—p0w0)

Po=— n=0

If w —wp # powy, the above eq. becomes zero.

o M- T co M-1 ( )
n ., \U—DPo)T
spectrum = w z Z ~Po®woTyy 6((» wg — PoWp) = Wo z e’" M 5w - Wp — PoWo
Po=—% n=0 Po=—0 n=0
M-1
) o (=D
If (”Mp") is integer, — 2w = 1, e =M



Solution of the equation of motion with wake fields

Otherwise, o 1 — ei2mpo) - . 1-M
e M = Ci—p2) =0 =
i2p#—Po)
n=0 1—e M n=0
Here, u and p, are integers. 0 i2(1-Po) — 1
_ H—Do
Let p=— W Po =PM +
© M-
o L po)n
spectrum = wy z z §(w — wg — Powo)
Po=— n=0
= Mw, 2 5((» —wg —pMwy — ,ua)o)
p=—00

 To find the effect of the wake field, we have to evaluate the impedance at
frequencies corresponding to frequencies present in the beam spectrum.



Physical interpretation of impedance
- Longitudinal wake function is defined A§(z) = - %N(z’)W"(z —z")

 For the case of a charge distribution A(z) (number of particles per unit
length):
A6(z) = - —f/l(z’)W”(Z —z")dz'

- We write the longitudinal charge distribution as a mode decomposition

Az') = —— f A(w)eic

« make the change of variables z' — z -7 :

ZI

(1)Z’

A6 (2) ———fj/l(w)e Wy (z)e "¢ dz'dw



Physical interpretation of impedance

. . . . Zoc _i% dz
» We define the longitudinal impedance Z;(w) = Ej W,(z)e "¢ —

* In terms of the impedance, the energy loss as function of longitudinal
position z becomes

cC T, 4m [ - 0z
AS(Z) = = yzocfﬂt(w)Z"(a))el ¢ dw
* Integrating with dz /c,
z=00 WZ dz c T, 4m [FT® [@=° 'z _@zdz
f AS(z)e” ¢ —= ‘ f f Mw")Zy(wNe ¢ dw'e™ ¢ —
Z=—00 C 277: C y ZOC Z=—00 a)’=—00 ¢

. C T 4m
- 2nCy Zc

w!=00 B Z=00 ) - EdZ
f /1((1)’)2" (a)’)da)’f el(w a))c?
wW!I=—00 = —

Z=—00



Physical interpretation of impedance

z= z d
where J eH@ “‘))ETZ =26 (w' — W)
Z=—0C0

2= .WZ dz c 1.4’ .
—i— _ e
Therefore, f__ AS(z)e "¢ T~ ImCy Zec 2r) Mw)Zj(w)

Z=—00

* By applying following relations,

AE AE ZoC\ e?
AS(2) = (Z): (Z), re=( 0 ) |
E, ym,c? A ) m,c?
AE(z) _j»zdz 1 .
* We can get f S € ¢ = Eec)t(a))Z"(a))



Physical interpretation of impedance

* Left hand side is the Fourier transform of a voltage (the energy change
of a particle over one turn of the accelerator). Right hand side is the

product of the current spectrum and the impedance.

_ |
e e — = EecA(w}Z”(w)

fAE(Z) WZ dz
 In other words, the impedance — defined as the Fourier transform of the
Wake function — relates the voltage seen by the beam (resulting from the
interaction of the beam with its surroundings) to the beam current in
frequency space.

V(w) = I(w)Z(w)



Example: coupled bunch motion with resistive-wall wake
field

« Consider the case of the transverse resistive-wall wake fields.

4t ¢ L — i
W@ =——= |~ (z < 0) Zuw) el ;Sg“(‘“)
mb> |Zoc O \V—z L W Tb>0gkin0
« The frequency shift is given by: 5 - |Am_c
0 skin ZoC 210 | w|
0 . 4m MNyr, ¢ ZZ (OM + 1) oq +
o E lZoc4nyvﬁ To o 1P H)wo + wg]
* Resistive-wall impedance is proportional to 1/+/w
« We expect to see the strongest effects in modes for which:
(PM + WPwy + wg =0 > u =~ —pM —vg 0<u<M, vg > 0)

« Therefore, the nearest mode to zero (most strongest mode) is when

p:_1. ‘uzM_,vﬁ



Example: coupled bunch motion with resistive-wall
wake field (ILC damping ring)

Ring parameters

ILC Damping ring

Beam Energy EO 5 GeV
Circumference (' 15.935 km
Average Current I[] 170 mA
The number of RF buckets 3455
Momentum Compaction Ck'(. 0.474e-3

Revolution angular frequency (UO

1.1821eb rad/s

Tune I/

75.783 / 76.413 / 0.252

T2y 5
Beam pipe radius b 32.9 mm
Electric conductivity of Beam pipe 0, 3.8e7 S/m
RF frequency f 650 MHz
RF voltage Ifrf 115 MV
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(growth rate vs mode number for the resistive wall wake)
Roughly half the modes grow (are unstable), and half the
modes are damped.

The strongest effects are for mode numbers around M -
Vg, (M s the number of bunches and Vg is the tune)



Example: coupled bunch motion with resistive-
wall wake field (4GSR ring case)

Korea-4GSR resistive-wall

Impedance (vertical)
3000 . T . .

*  Maximum growth rate 1/7=2139.23 at . =1308
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mode number

1200

1400

Ring parameters Korea-4GSR
Beam Energy EO 4 GeV
Circumference ( 799.3 m
Average Current 1TO 400 mA
RF harmonics 1 1332
Momentum Compaction Cl:'c. 7.77he-5

RF frequency f[]

499.593 MHz

RF voltage [jrf

3.5 MV

Bunch length 0

9.33 ps

Tune 'Ua‘-y-s 68.179 / 23.260 / 0.0034
Average Beta-function Ba‘-y 4.642 / 9.959 m
Beam pipe radius b 9 mm
Electric conductivity of Beam pipe 0, 3.01e7 S/m

Radiation damping time Ta‘.y.s

10.55 / 19.43 / 16.79 ms




Example: coupled bunch motion with resistive-wall
wake field

« The frequency shift
. 4m MNyr, ¢
l Zoc Amtyvg Ty

0, —wp ~ - > Z(0M + wwy + w]

p=—00

Im(Q, —wp ) > 0 means instability growth by Re(Z) < 0.

If we include the largest term in the summation, we get the fastest growth
rate of any of the modes that minimizes w = (pM + p + vp)wo = 0

(M >vg, p=-1, 0<u<M, u= M-int(vg)-1)
B B

Betatron tune has a fractional part, vg = Ng + A (0 < Ap <1). p, M, u,Ng are
Integers.

Since the impedance is largest at low frequencies, the beam mode with the highest growth rate will be the
mode with the the smallest negative value of w : a negative value of w will mean that the real part of Z, (w)
will be negative, which will mean that the imaginary part of (0, — wg will be positive.



Example: coupled bunch motion with resistive-wall wake
field

Substituting w = (A — 1)w, into resistive-wall impedance,

Z ((A,B — 1)(00 ) B C 1+i |Zyc 27w(1 — Aﬁ)wo
C B (Aﬁ _ 1)w0 nbh3c \ 47 c2

Growth rate for fastest—growing mode

T
l_,~4-7'[ C c<I> 1 |Zogcc C

~ Z()C 27Tb3? IA 27'[1/’8V 4o o |1 _Aﬁ

< I > is the average current (=MN, ec /C) I, = = ~ 17.045 kA

Te



Bunch-by-bunch feedback systems

« Parameters that determine the damping rate from feedback system are:
 beta functions at the pick-up (s;) and the kicker (s,)
» betatron phase advance between the pick-up and the kicker
« amplifier gain, g defined by: Ap, (s;) = gy(s1)
y(s;) Is bunch position at the pick-up (at location s;), and Ap,,(s;) is
kick applied to the bunch by the kicker (at location s,).

 In terms of the action J and angle ¢ variables, transverse coordinate
and momentum of a particle at the pick-up can be

Y1 = v 2b1/1c0s(91) Py1 = — %(sin(c]bl) + a;cos(¢;)
\ P1




Bunch-by-bunch feedback systems

Following the kicker, the coordinate and momentum

V2 =/ 2B2J1c08(¢p1 + Apyq)
2/,

Py2 = — E [sin(¢py + Ayq) + a; cos(Pg + Apyq)] + gyy
\

We can write in terms of a new action and angle:

V2 =/ 2B2 ]2 cos(¢3)

2
P2 = = [ 32 6In(@2) + @ os(#2))
\ 2




Bunch-by-bunch feedback systems

We can rewrite coordinate and momentum as follows

V2 =4/ 2P2]1 cos(¢p1 + Adyy) = /20,]; cos(¢,)
= I cos(¢y + Agzq) = I cos(¢z) (1)

21,

2
Py2 = — ﬁ_zz(Sin(¢2) + a; cos(¢y)) = —\/% [sin(¢p; + A1) + az cos(Ppy + Ada1)] + gys
\

by (1) [
- (\/]_2 sin(¢,) — \/]_15111(431 + A¢21)) T ay (\/]_2 cos(¢z) =~Hicos(¢y + A¢21)) = = %93’1
N

where, y; = \/2BJicos(p1) = Jz2sin(¢y) = Ji[sin(py + Agy1) —/BiB2gcos(@)]  (2)
Using square of Eq(1) and Eq.(2),
= J,=J1[1 — 2g+/B1B2cospy sin(¢y + Ad,1) + g*B1 B2 cos*(p1)]




Bunch-by-bunch feedback systems

1
Averaging over the initial phase angle ¢4, J, =J; [1 — g/ 162 sin(A¢,,) + 592,31,321

If the phase advance A¢,, is close to the (optimal) value of 90°,
the new action can be rewritten by Taylor expansion of exp-function.

1
e X*=1—x+=x%  x=g.BFsin(Ad,;) K 1,

2
. 2Ty
J2 = J1exp (—g ,31,3251n(A¢21)) ~ [1exp(— E)

where t,, Is the damping time of the feedback system

1 =g p1B2sin Ag,q

Trp ZTO




Bunch-by-bunch feedback systems

« From the required damping rate, we can calculate the required gain for
the feedback system. The gain of the feedback system determines the

voltage applied to the kicker.

« Consider a kicker consisting of two infinitely wide parallel plates of length
L, separated by a distance d and with a voltage V' between them.

!
T | -
- 8 —

L

The deflection (change in normalized momentum) of the bunch from
passing between the plates vl Vol

X

Ap,, =—2"=2
Pyi =P c” “E/ed




Bunch-by-bunch feedback systems

» The kicker voltage per unit bunch offset is given by — =_-_"_4
dy 2el

« Consider a feedback system used to damp the resistive wall instability
in the ILC damping rings. If we assume a maximum growth time of 40
turns, beta functions of 10 m at the pick-up and kicker, and a phase
advance of 90° between them, the required gain for the feedback

system is:;
y T,

1
= 2
J TrB \/ B102

* If we assume kickers of length 20 cm and separated by 2 cm, and a 5
GeV beam, the kicker voltage per unit bunch offset at the pick-up is:

= 0.005

av 1Ed
d_y = Ezzg = 1.25 kV/mm



Bunch-by-bunch feedback systems

« We consider the effect of noise on the pick-up, or in the amplifier. This
will lead to some variation in the applied kick from the “correct” value;
which will result in some excitation of betatron motion.

e Let us represent the noise in the feedback system by the addition of a
quantity 0, to the bunch position measured by the pick-up: y, - y; + 8y

(y1= /2B1J1 cos(¢py) + 6y)

averaging with ¢,

2=/ [1 — g~/ 1Pz sin(Agyq) + = 92,31,32 + = '8 g*(6y)*

2t 1 5 ,
Jo = Jiexp| — +=9°p6,(0y)
Ttot 2

This will modify the change in the action resulting from the voltage applied to the kicker



Bunch-by-bunch feedback systems

e Including the effect of noise in the feedback system, we can write the
equation of motion for the action as:

dl, g°B, <&y*> 2
dt ~ ZTO Ttotjl

We see that the action reaches an equilibrium with J; = J,:

aj, _ijeq exp (_ 2T0> _I_QZ,BZ <6y >*

— = =0
dt Ttot Ttot 2Ty

Ttot
]equ ~ 4__71092:82 < 53’2 >



Bunch-by-bunch feedback systems

* Let us assume that we double the gain of the feedback system,
compared to that required to exactly balance the resistive-wall
instability, so that:

T, 1 Ty < 6y? >
g=4 , ]equ ~ 4
TRW +/ b1 Trw D1

* Let us also assume that the specification on the bunch-to-bunch beam

jitter is a fraction fof the beam size:

2)equ < f*€, O =281 (fo,)* >2B),  f?Bey> 28]

 This sets an upper limit on the feedback system noise:

f? trw
< 6y? > < ———py€
8 T, "+



Bunch-by-bunch feedback systems

« As an example, consider the ILC damping rings. Let us assume that 7 =
10%, the beta function at the pick-up is 10 m, that the resistive-wall

growth time is 40 turns, and that the equilibrium vertical emittance is 2
pm.

 In other words, the pick-up needs a resolution of better than Tum
(neglecting any additional noise from the amplifier).

J<6y2> <1lum

This is a challenging, but not unrealistic specification.



Summary

« Long-range wake fields couple the motion of different bunches in a storage
ring. Depending on a range of factors (including the characteristics of the
wake fields, the beam current, beam energy, synchrotron radiation damping
rates etc.) this can lead to instabilities, in which the oscillations of the bunches

grow exponentially.

 Sources of long-range wake fields in storage rings include the finite resistance
of the vacuum chamber walls, and higher-order modes in the RF cavities (and,

possibly, other components).

A simple analytical model of the long-range wake field effects leads to an
estimate of the growth rates in terms of the impedance.

« Coupled-bunch instabilities can be controlled using bunch-by-bunch
feedback systems. For the ILC damping rings, bunch-to-bunch jitter
excited by noise in the feedback system (pick-up or amplifier) is a concern.
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