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Wake fields and wake functions

• Fields generated by the head of a bunch can act back on particles at 
the tail, modifying their dynamics and driving instabilities.

• The electromagnetic fields generated by a particle or a bunch of 
particles moving through a vacuum chamber are usually described as 
wake fields.

• The wake function gives the effect of a leading particle on a following 
particle, as a function of the longitudinal distance between the two 
particles.



Longitudinal and transverse wake functions

• Change in energy of particle B from the wake field of particle A, when the 
particles move through a given accelerator component, is:  

W|| is the wake function of the component,  e𝑁𝐴 is the charge of particle A
 is the relativistic factor, 𝑟𝑒 is the classical electron radius

𝑦𝐴: transverse offset of the leading bunch

〮 Transverse deflection of a following bunch

𝑊⊥ : transverse wake function

𝛥𝛿𝐵 = −
𝑟𝑒

𝛾
𝑁𝐴𝑊∥(𝑧 − 𝑧′)

𝛥𝑝𝑦,𝐵 = −
𝑟𝑒

𝛾
𝑁𝐴 𝑦𝐴 𝑊⊥(𝑧 − 𝑧′)



Example: resistive-wall long-range wake functions

• Consider the case of a vacuum chamber with conductivity σ, length L, and

circular cross-section of radius b.  Resistive-wall wake fields have both

short-range and a long-range effects.

For the parameter regime:   

longitudinal wake function   :  

transverse wake function   :
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Aluminium has an electrical conductivity () of 3.7×107 Ω-1m-1; 
so for a beam pipe of radius 1 cm, the range of validity of these expressions is -z ≫20 μm.
they should be safe for studies of multi-bunch effects.
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In the absence of any wake fields, the equation of motion for the 𝑛th 

bunch in a storage ring can be written:  

betatron frequency as: 

, νβ is the betatron tune.  We can add the transverse forces from the 
wake fields as driving terms on the right-hand side of the equation of 
motion.

Equation of motion for betatron oscillations

ሷ𝑦𝑛 + 𝜔2
𝛽 𝑦𝑛 = 0

𝜔𝛽 =
2𝜋 𝜈𝛽

𝑇0

𝑦𝑛
′′ +

𝜔𝛽

𝑐
2 𝑦𝑛 = 0



Equation of motion with wake fields

If 𝑊⊥(z) represents the wake function over the entire circumference,  
transverse deflection of the 𝑛th bunch over one turn can be obtained by 
summing the wake fields over all bunches over all previous turns: 

Ring is uniformly filled with 𝑀 equally-spaced bunches, each with a total of N0

particles. 

The sum over 𝑘 represents a sum over multiple turns; the sum over m 
represents a sum over all the bunches in the ring. 

𝑑𝑝𝑦,𝑛

𝑑𝑡
=

1

𝑐
ሷ𝑦𝑛 = −

𝑟𝑒

𝑇0𝛾
𝑁0 ෍

𝑘

෍

𝑚=0

𝑀−1

𝑊⊥(−𝑘𝐶 −
𝑚 − 𝑛

𝑀
𝐶)𝑦𝑚(𝑡 − 𝑘𝑇0 −

𝑚 − 𝑛

𝑀
𝑇0)

For ultra-relativistic motion,   wake function obeys 𝑊⊥ 𝑧  = 0 if z > 0



Equation of motion with wake fields

Including the wake fields, the equation of motion for betatron oscillations 

can be written: 

We find the behaviour of all the bunches in the ring, in the presence of the 

long-range wake fields represented by the wake function 𝑊⊥. We shall try a 

solution of the form:  

ሷ𝑦𝑛 + 𝜔2
𝛽 𝑦𝑛 = −

𝑐𝑟𝑒

𝑇0𝛾
𝑁0 ෍

𝑘

෍

𝑚=0

𝑀−1

𝑊⊥(−𝑘𝐶 −
𝑚 − 𝑛

𝑀
𝐶)𝑦𝑚(𝑡 − 𝑘𝑇0 −

𝑚 − 𝑛

𝑀
𝑇0)

𝑦𝑛 𝑡 ∝ 𝑒𝑥𝑝(2𝜋𝑖
𝜇𝑛

𝑀
)𝑒𝑥𝑝(−𝑖𝛺𝑡)

This solution describes the behaviour of a “mode” consisting of a particular pattern of 

transverse bunch positions, and oscillating with a particular frequency.  The frequency of a 

mode µ is represented by Ωµ ; imaginary part of Ωµ gives the growth (or damping) rate of 

the corresponding mode.



Coupled bunch modes

The mode number µ gives the phase advance between the 
betatron position of one bunch and the next.

Each bunch performs oscillations with frequency 𝛺µ as it 
moves around the ring. 

Because the bunches are coupled by the wake fields, the 
betatron frequency is shifted from the “nominal” frequency 
𝜔𝛽 ; the frequency in the presence of the wake fields 

depends on the mode number. 

The real part of 𝛺µ - 𝜔𝛽 gives the coherent frequency shift; 

the imaginary part of 𝛺µ - 𝜔𝛽 gives the exponential growth 

or damping rate for the mode. 



Equation of motion with wake fields    

( 𝛺 − 𝜔𝛽) ∗ 2𝜔𝛽

=
𝑁𝑟0𝑐

𝛾𝑇0
෍

𝑚=0

𝑀−1

෍

𝑘

∞

𝑒𝑥𝑝 2𝜋𝑖𝜇
𝑚 − 𝑛

𝑀
𝑊⊥(−𝑘𝐶 −

𝑚 − 𝑛

𝑀
𝐶)𝑒𝑥𝑝(𝑖𝛺𝑇0(𝑘 +

𝑚 − 𝑛

𝑀
))

If mode frequency is close to betatron frequency, 𝛺 ≈ 𝜔𝛽. (𝜔𝛽 = 𝜔𝑜 ν𝛽)

( 𝛺 − 𝜔𝛽)

=
𝑁𝑟0𝑐

4𝜋𝜈𝛽 𝛾
෍

𝑚=0

𝑀−1

[෍

𝑘

∞

𝑊⊥(−𝑘𝐶 −
𝑚 − 𝑛

𝑀
𝐶)𝑒𝑥𝑝(2𝜋𝑖𝜈𝛽𝑘) ] 𝑒𝑥𝑝(2𝜋𝑖(𝜇 + 𝜈𝛽)

𝑚 − 𝑛

𝑀
)

(−𝛺2 + 𝜔𝛽
2) 𝑒𝑥𝑝(2𝜋𝑖

𝜇𝑛

𝑀
)𝑒𝑥𝑝(−𝑖𝛺𝑡)

= −
𝑁𝑟0𝑐

𝛾𝑇0
෍

𝑚=0

𝑀−1

෍

𝑘

exp 2𝜋𝑖
𝜇𝑚

𝑀
𝑊⊥ (−𝑘𝐶 −

𝑚 − 𝑛

𝑀
𝐶)𝑒𝑥𝑝(𝑖𝛺𝑇0(𝑘 +

𝑚 − 𝑛

𝑀
))

(𝜔𝛽= 𝜔𝑜 ν𝛽)



Solution of the equation of motion with wake fields

Observe that the factor in square brackets is effectively the Fourier 
transform of  wake function. We define the impedance Z⊥ corresponding 
to the wake field as the Fourier transform of the wake function:  

𝑍⊥(𝜔) = 𝑖
𝑍0𝑐

4𝜋
න

−∞

∞

𝑊⊥(𝑧)𝑒−𝑖
𝜔𝑧
𝑐

𝑑𝑧

𝑐

𝑊⊥(𝑧) = −𝑖
𝑍0𝑐

4𝜋

1

2𝜋
න

−∞

∞

𝑍⊥(𝜔)𝑒𝑖
𝜔𝑧
𝑐 𝑑𝜔



Solution of the equation of motion with wake fields

From the definition of the impedance 

෍

𝑘=0

∞

𝑊⊥(−𝑘𝐶 −
𝑚 − 𝑛

𝑀
𝐶)𝑒2𝜋𝑖𝜈𝛽𝑘

= −𝑖
4𝜋

𝑍0𝑐

1

2𝜋
න

−∞

∞

𝑑𝜔 ෍

𝑘=0

∞

𝑍⊥ 𝜔 𝑒𝑥𝑝(−𝑖
𝜔

𝑐
(𝑘𝐶 +

𝑚 − 𝑛

𝑀
𝐶))𝑒2𝜋𝑖𝜈𝛽𝑘

= −𝑖
4𝜋

𝑍0𝑐

1

2𝜋
න

−∞

∞

𝑑𝜔 ෍

𝑘=0

∞

𝑍⊥ 𝜔 𝑒𝑥𝑝(−𝑖(𝜔 − 𝜔𝛽)𝑇0𝑘) 𝑒𝑥𝑝(−𝑖
𝜔

𝑐
(
𝑚 − 𝑛

𝑀
)𝐶)

= −𝑖
4𝜋

𝑍0𝑐

1

2𝜋
න

−∞

∞

𝑑𝜔 ෍

𝑘=0

∞

𝑍⊥(𝜔 + 𝜔𝛽)𝑒𝑥𝑝(−𝑖𝜔𝑇0𝑘) 𝑒𝑥𝑝(−𝑖(𝜔 + 𝜔𝛽)(
𝑚 − 𝑛

𝑀
)𝑇0)

(𝜔𝛽= 𝜔𝑜 ν𝛽)



Solution of the equation of motion with wake fields  

• Note that we can write the summation over 𝑘 in terms of a Dirac delta 
function:

෍

𝑘=0

∞

𝑒−𝑖𝜔𝑇0𝑘 = ෍

𝑝′=−∞

∞

𝛿
𝜔𝑇0

2𝜋
− 𝑝′ , ( ෍

𝑘=−∞

∞

𝛿 𝑥 − 2𝜋𝑘 = ෍

𝑛=−∞

∞
1

2𝜋
𝑒𝑖𝑛𝑥)

Then we can perform the integral over 𝜔

෍

𝑘=0

∞

𝑊⊥(−𝑘𝐶 −
𝑚 − 𝑛

𝑀
𝐶)𝑒2𝜋𝑖𝜈𝛽𝑘

= −𝑖
4𝜋

𝑍0𝑐

1

2𝜋
න

−∞

∞

𝑑𝜔 ෍

𝑘=0

∞

𝑍⊥(𝜔 + 𝜔𝛽)𝑒𝑥𝑝(−𝑖𝜔𝑇0𝑘) 𝑒𝑥𝑝(−𝑖(𝜔 + 𝜔𝛽)(
𝑚 − 𝑛

𝑀
)𝑇0)

= −𝑖
4𝜋

𝑍0𝑐

1

𝑇0
σ𝑝′=−∞

∞ 𝑍⊥(𝑝′𝜔0 + 𝜔𝛽)𝑒−𝑖(𝑝′𝜔0+𝜔𝛽)(
𝑚−𝑛

𝑀
𝑇0) (𝜔 = 𝑝′𝜔0)



Solution of the equation of motion with wake fields

𝛺𝜇 − 𝜔𝛽

≈ −𝑖
𝑟𝑒𝑐

4𝜋𝜈𝛽

𝑁0

𝛾
෍

𝑚=0

𝑀−1

[
4𝜋

𝑍0𝑐

1

𝑇0
෍

𝑝′=−∞

∞

𝑍⊥(𝑝′𝜔0 + 𝜔𝛽)𝑒−𝑖(𝑝′𝜔0+𝜔𝛽)(
𝑚−𝑛

𝑀 𝑇0) ]𝑒2𝜋𝑖(𝜇+𝜈𝛽)
𝑚−𝑛

𝑀

= −𝑖
4𝜋

𝑍0𝑐

𝑟𝑒𝑐

4𝜋𝜈𝛽

𝑁0

𝛾

1

𝑇0
෍

𝑝′=−∞

∞

෍

𝑚=0

𝑀−1

𝑍⊥(𝑝′𝜔0 + 𝜔𝛽)𝑒−2𝜋𝑖(𝑝′−𝜇)(
𝑚−𝑛

𝑀
)

We observe that, for large 𝑀, the summation over m vanishes, unless: 

𝑝′ − 𝜇 =  𝑝𝑀 (𝑝 is an integer) ෍

𝑚=0

𝑀−1

𝑒−2𝜋𝑖(𝑝′−𝜇)(
𝑚−𝑛

𝑀 ) = 𝑀

𝑝′ − 𝜇 ≠ 𝑝𝑀, ෍

𝑚=0

𝑀−1

𝑒−2𝜋𝑖(
𝑚−𝑛

𝑀 ) = 0

(𝑇0=2𝜋/𝜔0)



Solution of the equation of motion with wake fields

Ωµ gives the frequency of a bunch in the case that the bunches are arranged 
in a mode µ:

𝛺𝜇 − 𝜔𝛽 ≈ −𝑖
4𝜋

𝑍0𝑐

𝑀𝑁0𝑟𝑒𝑐

4𝜋𝛾𝜈𝛽𝑇0
෍

𝑝′=−∞

∞

𝑍⊥[(𝑝𝑀 + 𝜇)𝜔0 + 𝜔𝛽]

𝑦𝑛
𝜇 𝑡 ∝ 𝑒𝑥𝑝(2𝜋𝑖

𝜇𝑛

𝑀
)𝑒𝑥𝑝(−𝑖𝛺𝜇𝑡)

• We see that associated with long-range wake field, there are two effects:

• a frequency shift of coherent betatron oscillations, given by the

imaginary (“reactive”) part of the impedance

• an exponential growth or damping of the betatron oscillations, given

by the real (“resistive”) part of the impedance.



Solution of the equation of motion with wake fields 

Note that we evaluate the impedance at frequencies: 

This can be understood in terms of the beam spectrum. At a fixed point in the 
ring, the beam signal looks like

𝑝𝑀 + 𝜇 𝜔0 + 𝜔𝛽

beam signal    ∝ ෍

𝑘=−∞

∞

෍

𝑛=0

𝑀−1

𝑦𝑛
𝜇 𝑡 𝛿(𝑡 − 𝑘𝑇0 +

𝑛

𝑀
𝑇0)

𝑦𝑛
𝜇 𝑡 ∝ 𝑒𝑥𝑝 2𝜋𝑖

𝜇𝑛

𝑀
𝑒𝑥𝑝 −𝑖𝛺𝜇𝑡 ≈ 𝑒𝑥𝑝 2𝜋𝑖

𝜇𝑛

𝑀
𝑒𝑥𝑝 −𝑖𝜔𝛽𝑡 = 𝑒𝑥𝑝 𝑖(2𝜋𝜇

𝑛

𝑀
− 𝜔𝛽𝑡)

The beam spectrum is the Fourier transform of the signal

𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 ∝ න
−∞

∞

෍

𝑘=−∞

∞

෍

𝑛=0

𝑀−1

𝑒
𝑖 2𝜋𝜇

𝑛
𝑀−𝜔𝛽𝑡

𝛿(𝑡 − 𝑘𝑇0 +
𝑛

𝑀
𝑇0) 𝑒𝑖𝜔𝑡𝑑𝑡



Solution of the equation of motion with wake fields  

𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 ∝ 𝜔0 ෍

𝑝0=−∞

∞

෍

𝑛=0

𝑀−1

𝑒𝑖2𝜋𝜇
𝑛

𝑀𝑒−𝑖 𝜔−𝜔𝛽
𝑛𝑇0
𝑀 𝛿 𝜔 − 𝜔𝛽 − 𝑝0𝜔0

𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 ∝ ෍

𝑘=−∞

∞

𝑒𝑖 𝜔−𝜔𝛽 𝑘𝑇0 ෍

𝑛=0

𝑀−1

𝑒𝑖(2𝜋𝜇
𝑛
𝑀 − 𝜔−𝜔𝛽

𝑛
𝑀𝑇0)

෍

𝑘=−∞

∞

𝑒𝑖 𝜔−𝜔𝛽 𝑘𝑇0 = 𝜔0 ෍

𝑝0=−∞

∞

𝛿 𝜔 − 𝜔𝛽 − 𝑝0𝜔0

If 𝜔 − 𝜔𝛽 ≠ 𝑝0 𝜔0, the above eq. becomes zero.

𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 = 𝜔0 ෍

𝑝0=−∞

∞

෍

𝑛=0

𝑀−1

𝑒𝑖2𝜋
𝜇𝑛
𝑀 𝑒−𝑖𝑝0𝜔0

𝑛𝑇0
𝑀 𝛿 𝜔 − 𝜔𝛽 − 𝑝0𝜔0 = 𝜔0 ෍

𝑝0=−∞

∞

෍

𝑛=0

𝑀−1

𝑒𝑖2𝜋
𝜇−𝑝0 𝑛

𝑀 𝛿 𝜔 − 𝜔𝛽 − 𝑝0𝜔0

If 
𝜇−𝑝0

𝑀
 is integer, 𝑒𝑖2𝜋

𝜇−𝑝0 𝑛
𝑀 = 1, ෍

𝑛=0

𝑀−1

𝑒𝑖2𝜋
𝜇−𝑝0 𝑛

𝑀 = 𝑀



Solution of the equation of motion with wake fields 

• To find the effect of the wake field, we have to evaluate the impedance at 
frequencies corresponding to frequencies present in the beam spectrum.

Otherwise,
෍

𝑛=0

𝑀−1

𝑒𝑖2𝜋
𝜇−𝑝0 𝑛

𝑀 =
1 − 𝑒𝑖2𝜋 𝜇−𝑝0

1 − 𝑒𝑖2𝜋
𝜇−𝑝0

𝑀

= 0 ෍

𝑛=0

𝑀−1

𝑟𝑛 =
1 − 𝑟𝑀

1 − 𝑟

Here, 𝜇 and 𝑝0 are integers. 𝑒𝑖2𝜋 𝜇−𝑝0 = 1

Let 𝑝 ≡ −
𝜇 − 𝑝0

𝑀
𝑝0 = 𝑝𝑀 + 𝜇

𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 = 𝜔0 ෍

𝑝0=−∞

∞

෍

𝑛=0

𝑀−1

𝑒𝑖2𝜋
𝜇−𝑝0 𝑛

𝑀 𝛿 𝜔 − 𝜔𝛽 − 𝑝0𝜔0

= 𝑀𝜔0 ෍

𝑝=−∞

∞

𝛿 𝜔 − 𝜔𝛽 − 𝑝𝑀𝜔0 − 𝜇𝜔0



Physical interpretation of impedance

• Longitudinal wake function is defined

• For the case of a charge distribution       (number of particles per unit 
length):

• We write the longitudinal charge distribution as a mode decomposition

• make the change of variables 𝑧′ → 𝑧 - 𝑧′ :

Δ𝛿(𝑧) = -
𝑟𝑒

𝛾
𝑁 𝑧′ 𝑊∥(𝑧 − 𝑧′)

𝜆(𝑧)

Δ𝛿(𝑧) = -
𝑟𝑒

𝛾
׬ 𝜆 𝑧′ 𝑊∥ 𝑧 − 𝑧′ 𝑑𝑧′

𝜆 𝑧′ =
1

2𝜋 𝐶
න ሚ𝜆 𝜔 𝑒𝑖

𝜔𝑧′
𝑐 𝑑𝜔

Δ𝛿 𝑧 =
1

2𝜋 𝐶

𝑟𝑒

𝛾
න න ሚ𝜆 𝜔 𝑒𝑖

𝜔𝑧
𝑐 𝑊∥ 𝑧′ 𝑒−𝑖

𝜔𝑧′
𝑐 𝑑𝑧′𝑑𝜔



Physical interpretation of impedance

• We define the longitudinal impedance 

• In terms of the impedance, the energy loss as function of longitudinal 
position 𝑧 becomes

𝑍∥ 𝜔 =
𝑍0𝑐

4𝜋
න 𝑊∥ 𝑧 𝑒−𝑖

𝜔𝑧
𝑐

𝑑𝑧

𝑐

Δ𝛿 𝑧 =
𝑐

2𝜋 𝐶

𝑟𝑒

𝛾

4𝜋

𝑍0𝑐
න ሚ𝜆 𝜔 𝑍∥ 𝜔 𝑒𝑖

𝜔𝑧
𝑐 𝑑𝜔

න
𝑧=−∞

𝑧=∞

Δ𝛿 𝑧 𝑒−𝑖
𝜔𝑧
𝑐

𝑑𝑧

𝑐
=

𝑐

2𝜋 𝐶

𝑟𝑒

𝛾

4𝜋

𝑍0𝑐
න

𝑧=−∞

𝑧=∞

න
𝜔′=−∞

𝜔′=∞
ሚ𝜆 𝜔′ 𝑍∥ 𝜔′ 𝑒𝑖

𝜔′𝑧
𝑐 𝑑𝜔′ 𝑒−𝑖

𝜔𝑧
𝑐

𝑑𝑧

𝑐

• Integrating with d𝑧 /c,

=
𝑐

2𝜋 𝐶

𝑟𝑒

𝛾

4𝜋

𝑍0𝑐
න

𝜔′=−∞

𝜔′=∞
ሚ𝜆 𝜔′ 𝑍∥ 𝜔′ 𝑑𝜔′ න

𝑧=−∞

𝑧=∞

𝑒𝑖(𝜔′−𝜔)
𝑧
𝑐

𝑑𝑧

𝑐



Physical interpretation of impedance

where

න
𝑧=−∞

𝑧=∞

Δ𝛿 𝑧 𝑒−𝑖
𝜔𝑧
𝑐

𝑑𝑧

𝑐
=

𝑐

2𝜋 𝐶

𝑟𝑒

𝛾

4𝜋

𝑍0𝑐
(2𝜋) ሚ𝜆 𝜔 𝑍∥ 𝜔

න
Δ𝐸(𝑧)

𝑒
𝑒−𝑖

𝜔𝑧
𝑐

𝑑𝑧

𝑐
=

1

𝐶
𝑒𝑐 ሚ𝜆 𝜔 𝑍∥(𝜔)

න
𝑧=−∞

𝑧=∞

𝑒𝑖(𝜔′−𝜔)
𝑧
𝑐

𝑑𝑧

𝑐
= 2𝜋𝛿(𝜔′ − 𝜔)

• Therefore, 

Δ𝛿 𝑧 =
Δ𝐸(𝑧)

𝐸0
=

Δ𝐸(𝑧)

𝛾𝑚𝑒𝑐2
, 𝑟𝑒 =

𝑍0𝑐

4𝜋

𝑒2

𝑚𝑒𝑐2
,

• By applying following relations,

• We can get



Physical interpretation of impedance

• Left hand side is the Fourier transform of a voltage (the energy change 
of a particle over one turn of the accelerator). Right hand side is the 
product of the current spectrum and the impedance.

• In other words, the impedance ─ defined as the Fourier transform of the
Wake function ─ relates the voltage seen by the beam (resulting from the
interaction of the beam with its surroundings) to the beam current in
frequency space.

න
Δ𝐸(𝑧)

𝑒
𝑒−𝑖

𝜔𝑧
𝑐

𝑑𝑧

𝑐
=

1

𝐶
𝑒𝑐 ሚ𝜆 𝜔 𝑍∥(𝜔)

෨𝑉 𝜔 = ሚ𝐼 𝜔 𝑍∥(𝜔)



Example: coupled bunch motion with resistive-wall wake 
field

• Consider the case of the transverse resistive-wall wake fields. 

𝑊⊥ 𝑧 = −
2

𝜋𝑏3

4𝜋

𝑍0𝑐

𝑐

𝜎

𝐿

−𝑧
(𝑧 < 0)

𝑍⊥(𝜔)

𝐿
≈

𝑐

𝜔

1 − 𝑖 sgn 𝜔

𝜋𝑏3𝛿𝑠𝑘𝑖𝑛𝜎

𝛿𝑠𝑘𝑖𝑛 =
4𝜋

𝑍0𝑐

𝑐2

2𝜋𝜎 𝜔

Ω𝜇 − 𝜔𝛽 ≈ −𝑖
4𝜋

𝑍0𝑐

𝑀𝑁0𝑟𝑒

4𝜋𝛾𝜈𝛽

𝑐

𝑇0
෍

𝑝=−∞

∞

𝑍⊥[ 𝑝𝑀 + 𝜇 𝜔0 + 𝜔𝛽]

• Resistive-wall impedance is proportional to .
• We expect to see the strongest effects in modes for which:

1/ 𝜔

𝑝𝑀 + 𝜇 𝜔0 + 𝜔𝛽 ≈ 0 → 𝜇 ≈ −𝑝𝑀 − 𝜈𝛽

• The frequency shift is given by:

(0 ≤ 𝜇 < 𝑀, 𝜈𝛽 > 0)

• Therefore, the nearest mode to zero (most strongest mode) is when    
𝑝 = -1. 𝜇 ≈ 𝑀 − 𝜈𝛽



Example: coupled bunch motion with resistive-wall 
wake field (ILC damping ring)

(growth rate vs mode number for the resistive wall wake)
Roughly half the modes grow (are unstable), and half the 
modes are damped.  

The strongest effects are for mode numbers around M –
νβ, (M is the number of bunches and νβ is the tune) 



Example: coupled bunch motion with resistive-
wall wake field  (4GSR ring case)



Example: coupled bunch motion with resistive-wall 
wake field
• The frequency shift

Im(Ω𝜇 − 𝜔𝛽 ) > 0 means instability growth by 𝑅𝑒 𝑍 < 0.

If we include the largest term in the summation, we get the fastest growth

rate of any of the modes that minimizes 𝜔 = 𝑝𝑀 + 𝜇 + 𝜈𝛽 𝜔0 ≈ 0

(𝑀 > 𝜈𝛽,   𝑝=-1,   0  𝜇 < 𝑀, 𝜇 = 𝑀-int(𝜈𝛽)-1)

Ω𝜇 − 𝜔𝛽 ≈ −𝑖
4𝜋

𝑍0𝑐

𝑀𝑁0𝑟𝑒

4𝜋𝛾𝜈𝛽

𝑐

𝑇0
෍

𝑝=−∞

∞

𝑍⊥[ 𝑝𝑀 + 𝜇 𝜔0 + 𝜔𝛽]

Betatron tune has a fractional part, 𝜈𝛽 = 𝑁𝛽 + Δ𝛽 (0 < Δ𝛽 < 1). 𝑝, 𝑀, 𝜇, 𝑁𝛽 are
integers.

Since the impedance is largest at low frequencies, the beam mode with the highest growth rate will be the 
mode with the the smallest negative value of 𝜔 : a negative value of 𝜔 will mean that the real part of 𝑍⊥(𝜔)
will be negative, which will mean that the imaginary part of Ω𝜇 − 𝜔𝛽 will be positive.



Example: coupled bunch motion with resistive-wall wake 
field

< 𝐼 > is the average current (=𝑀𝑁0 𝑒𝑐 /C)

Γ ≈
4𝜋
𝑍0𝑐

𝐶
2𝜋𝑏3

𝑐
𝛾

< 𝐼 >
𝐼𝐴

1
2𝜋𝜈𝛽

𝑍0𝑐
4𝜋

𝑐
𝜎

𝐶
1 − Δ𝛽

𝐼𝐴 =
𝑒𝑐

𝑟𝑒
≈ 17.045 kA

Substituting 𝜔 = Δ𝛽 − 1 𝜔0 into resistive-wall impedance,

𝑍⊥ Δ𝛽 − 1 𝜔0

𝐶
=

𝑐

Δ𝛽 − 1 𝜔0

1 + 𝑖

𝜋𝑏3𝜎

𝑍0𝑐

4𝜋

2𝜋𝜎 1 − Δ𝛽 𝜔0

𝑐2

Growth rate for fastest−growing mode



Bunch-by-bunch feedback systems

• Parameters that determine the damping rate from feedback system are:

• beta functions at the pick-up (𝑠1) and the kicker 𝑠2

• betatron phase advance between the pick-up and the kicker

• amplifier gain, g defined by:   

𝑦(s1) is bunch position at the pick-up (at location s1), and Δ𝑝𝑦 𝑠2 is      

kick applied to the bunch by the kicker (at location s2).

• In terms of the action 𝐽 and angle 𝜙 variables, transverse coordinate 
and momentum of a particle at the pick-up can be

Δ𝑝𝑦 𝑠2 = 𝑔𝑦(𝑠1)

𝑦1 = 2𝛽1𝐽1cos(𝜙1) 𝑝𝑦1 = −
2𝐽1

𝛽1
(sin 𝜙1 + 𝛼1cos(𝜙1)



Bunch-by-bunch feedback systems

Following the kicker,  the coordinate and momentum

We can write in terms of a new action and angle:

𝑦2 = 2𝛽2𝐽1cos(𝜙1 + Δ𝜙21)

𝑝𝑦2 = −
2𝐽1

𝛽2
sin 𝜙1 + Δ𝜙21 + 𝛼2 cos 𝜙1 + Δ𝜙21 + 𝑔𝑦1

𝑦2 = 2𝛽2 𝐽2 cos(𝜙2)

𝑝𝑦2 = −
2𝐽2

𝛽2
(sin 𝜙2 + 𝛼2 cos 𝜙2 )



Bunch-by-bunch feedback systems

We can rewrite coordinate and momentum as follows

𝑦2 = 2𝛽2𝐽1 cos 𝜙1 + Δϕ21 = 2𝛽2𝐽2 cos 𝜙2

→ 𝐽1 cos 𝜙1 + Δ𝜙21 = 𝐽2 cos 𝜙2 (1)

𝑝𝑦2 = −
2𝐽2

𝛽2
sin 𝜙2 + 𝛼2 cos 𝜙2 = −

2𝐽1

𝛽2
[sin 𝜙1 + Δ𝜙21 + 𝛼2 cos 𝜙1 + Δ𝜙21 ] + 𝑔𝑦1

→ 𝐽2 sin 𝜙2 − 𝐽1 sin 𝜙1 + Δ𝜙21 + 𝛼2 𝐽2 cos 𝜙2 − 𝐽1 cos 𝜙1 + Δ𝜙21 = −
𝛽2

2
𝑔𝑦1

𝑏𝑦 (1)

→ 𝐽2 sin 𝜙2 = 𝐽1[sin 𝜙1 + Δ𝜙21 − 𝛽1𝛽2𝑔𝑐𝑜𝑠 𝜙1 ]   (2)𝑦1 = 2𝛽1𝐽1cos(𝜙1)where, 

→ 𝐽2= 𝐽1[1 − 2𝑔 𝛽1𝛽2𝑐𝑜𝑠𝜙1 sin 𝜙1 + Δ𝜙21 + 𝑔2𝛽1𝛽2 cos2(𝜙1)]

Using square of Eq(1) and Eq.(2),



Bunch-by-bunch feedback systems

where 𝐹𝐵 is the damping time of the feedback system

1

𝜏𝐹𝐵
=

𝑔 𝛽1𝛽2sin Δ𝜙21

2𝑇0

If the phase advance 𝜙21 is close to the (optimal) value of 90°, 
the new action can be rewritten by Taylor expansion of exp-function.

𝑒−𝑥 ≈ 1 − 𝑥 +
1

2
𝑥2, 𝑥 = 𝑔 𝛽1𝛽2 sin Δ𝜙21 ≪ 1,

𝐽2 ≈ 𝐽1 exp −𝑔 𝛽1𝛽2sin Δ𝜙21 ≈ 𝐽1exp(−
2𝑇0

𝜏𝐹𝐵
) 

Averaging over the initial phase angle 𝜙1, 𝐽2 = 𝐽1 1 − 𝑔 𝛽1𝛽2 sin Δ𝜙21 +
1

2
𝑔2𝛽1𝛽2



Bunch-by-bunch feedback systems

• From the required damping rate, we can calculate the required gain for 
the feedback system.  The gain of the feedback system determines the 
voltage applied to the kicker.  

• Consider a kicker consisting of two infinitely wide parallel plates of length 
L, separated by a distance d and with a voltage V  between them.

The deflection (change in normalized momentum) of the bunch from 
passing between the plates

Δ𝑝𝑦1 =
𝐹𝑥

𝑃𝑜

𝐿

𝑐
= 2

𝑉

𝐸/𝑒

𝐿

𝑑



Bunch-by-bunch feedback systems

• The kicker voltage per unit bunch offset is given by

• Consider a feedback system used to damp the resistive wall instability 
in the ILC damping rings. If we assume a maximum growth time of 40 
turns, beta functions of 10 m at the pick-up and kicker, and a phase 
advance of 90° between them, the required gain for the feedback 
system is: 

• If we assume kickers of length 20 cm and separated by 2 cm, and a 5 
GeV beam, the kicker voltage per unit bunch offset at the pick-up is:  

𝑑𝑉

𝑑𝑦
=

1

2

𝐸

𝑒

𝑑

𝐿
𝑔 = 1.25 kV/mm

𝑔 = 2
𝑇0

𝜏𝐹𝐵

1

𝛽1𝛽2

= 0.005

𝑑𝑉

𝑑𝑦
=

1

2

𝐸

𝑒

𝑑

𝐿
𝑔



Bunch-by-bunch feedback systems

• We consider the effect of noise on the pick-up, or in the amplifier. This 
will lead to some variation in the applied kick from the “correct” value; 
which will result in some excitation of betatron motion.

• Let us represent the noise in the feedback system by the addition of a 
quantity δy to the bunch position measured by the pick-up: 𝑦1 → 𝑦1 + 𝛿𝑦

𝐽2 ≈ 𝐽1 exp −
2𝑡

𝜏𝑡𝑜𝑡
+

1

2
𝑔2𝛽2(𝛿𝑦)2

averaging with 𝜙1, 𝐽2 = 𝐽1 1 − 𝑔 𝛽1𝛽2 sin Δ𝜙21 +
1

2
𝑔2𝛽1𝛽2 +

𝛽2

2
𝑔2 𝛿𝑦 2

(𝑦1= 2𝛽1𝐽1 cos 𝜙1 + 𝛿𝑦)

This will modify the change in the action resulting from the voltage applied to the kicker 



Bunch-by-bunch feedback systems

• Including the effect of noise in the feedback system, we can write the 
equation of motion for the action as:  

We see that the action reaches an equilibrium with 𝐽1 ≈ 𝐽2: 

𝑑𝐽2

𝑑𝑡
≈

𝑔2𝛽2 < 𝛿𝑦2 >

2𝑇0
−

2

𝜏𝑡𝑜𝑡
𝐽1

𝐽𝑒𝑞𝑢 ≈
𝜏𝑡𝑜𝑡

4𝑇0
𝑔2𝛽2 < 𝛿𝑦2 >

𝑑𝐽2

𝑑𝑡
= −

2𝐽2
𝑒𝑞

𝜏𝑡𝑜𝑡
exp −

2𝑇0

𝜏𝑡𝑜𝑡
+

𝑔2𝛽2 < 𝛿𝑦 >2

2𝑇0
= 0



Bunch-by-bunch feedback systems

• Let us assume that we double the gain of the feedback system, 
compared to that required to exactly balance the resistive-wall 
instability, so that:  

• Let us also assume that the specification on the bunch-to-bunch beam 
jitter is a fraction f of the beam size: 

• This sets an upper limit on the feedback system noise: 

𝑔 = 4
𝑇0

𝜏𝑅𝑊

1

𝛽1𝛽2

, 𝐽𝑒𝑞𝑢 ≈ 4
𝑇0

𝜏𝑅𝑊

< 𝛿𝑦2 >

𝛽1

2𝐽𝑒𝑞𝑢 < 𝑓2𝜖𝑦

< 𝛿𝑦2 > <
𝑓2

8

𝜏𝑅𝑊

𝑇0
𝛽1𝜖𝑦

(𝑦2
𝑚 = 2𝛽 𝐽, 𝑓𝑦

2 > 2𝛽 𝐽, 𝑓2 𝛽𝜖𝑦 > 2𝛽 𝐽)



Bunch-by-bunch feedback systems

• As an example, consider the ILC damping rings. Let us assume that f = 
10%, the beta function at the pick-up is 10 m, that the resistive-wall 
growth time is 40 turns, and that the equilibrium vertical emittance is 2 
pm.   

• In other words, the pick-up needs a resolution of better than 1μm 
(neglecting any additional noise from the amplifier). 

This is a challenging, but not unrealistic specification.

< 𝛿𝑦2 > < 1 𝜇𝑚



Summary
• Long-range wake fields couple the motion of different bunches in a storage 

ring. Depending on a range of factors (including the characteristics of the 
wake fields, the beam current, beam energy, synchrotron radiation damping 
rates etc.) this can lead to instabilities, in which the oscillations of the bunches 
grow exponentially.

• Sources of long-range wake fields in storage rings include the finite resistance 
of the vacuum chamber walls, and higher-order modes in the RF cavities (and, 
possibly, other components).

• A simple analytical model of the long-range wake field effects leads to an 
estimate of the growth rates in terms of the impedance.

• Coupled-bunch instabilities can be controlled using bunch-by-bunch

feedback systems. For the ILC damping rings, bunch-to-bunch jitter 

excited by noise in the feedback system (pick-up or amplifier) is a concern.
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