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Fast-ion instability

■ In electron storage rings, residual gas molecules can be ionized by the beam. The resulting          
positive ions are trapped in the electric field of the beam, and accumulate to high density.   
→ The fields of the ions can then drive beam instabilities. 

■ While electrons move rapidly on the time scale of a single bunch passage, ions move relatively 
slowly.  The dynamical behaviour is then somewhat different.

■ If a storage ring is uniformly filled with electron bunches, then ions accumulate over many turns. 
This leads to the well-known phenomenon of ion trapping, which is usually solved by including 
"gaps" in the fill pattern. 

■ Under certain conditions, sufficient ions can accumulate in the passage of a small number of 
bunches to drive an instability, known as the "fast ion instability".



Equation of motion of an ion due to electric field of electron bunch

𝑀𝑖𝑜𝑛 ሷ𝑦𝑖 = 𝑞𝑖 𝐸𝑦
𝑒𝑙𝑒𝑐 , 𝐸𝑦

𝑒𝑙𝑒𝑐 = 
λ 𝑦

2𝜋𝜀0𝜎𝑦 𝜎𝑥+𝜎𝑦

ሷ𝑦𝑖 = −
𝑒λ𝑦𝑖

𝐴𝑚𝑝 2𝜋𝜀0𝜎𝑦 𝜎𝑥 + 𝜎𝑦

ሷ𝑦𝑖 =
−2𝑐2(𝑒2)λ 𝑦𝑖

𝐴𝑒(4𝜋𝜀0𝑚𝑝𝑐
2)𝜎𝑦 𝜎𝑥 + 𝜎𝑦

=
−λ 2𝑐2 𝑟𝑝𝑦𝑖

𝑒𝐴𝜎𝑦 𝜎𝑥 + 𝜎𝑦

λ =
𝑒𝑁𝑏
𝑙𝑏

, 𝑟𝑝 =
𝑒2

4𝜋𝜀0 𝑚𝑝𝑐
2 ∶ classical proton radius

=
−𝑁𝑏
𝑙𝑏

2𝑐2𝑟𝑝𝑦𝑖

𝐴𝜎𝑦 𝜎𝑥 + 𝜎𝑦

ሶ𝑦𝑖 = න ሷ𝑦𝑖𝑑𝑡 , 𝑑𝑡 =
𝑙𝑏
𝑐

ሶ𝑦𝑖 = −
2𝑁𝑏𝑟𝑝𝑐 𝑦𝑖

𝐴𝜎𝑦 𝜎𝑥 + 𝜎𝑦
+ ሶ𝑦𝑖(0)

𝑛 ∶ number of bunches per beam, 𝑙𝑏 : bunch length     A : atomic mass of ion
𝑁𝑏 : number of electron / bunch    𝑞𝑖 : charge of ion 𝑀𝑖𝑜𝑛: mass of ion
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𝑘 =
2𝑁𝑏𝑟𝑝𝑐

𝐴𝜎𝑦 𝜎𝑥+𝜎𝑦



Mechanism of ion trapping in bunch can be modelled as the ions experience a focusing force
from a bunch and drift in bunch gaps.

Vertical displacement of trapped ion at a time t and a position s is modelled as 

𝑦
ሶ𝑦 𝑡=𝑡

=
1 𝑡𝑏
0 1

1 0
−𝑘 1

𝑦
ሶ𝑦 𝑡=0

𝑡𝑏 : bunch separation,   linear kick  : 𝑘 =
2𝑁𝑏𝑟𝑝𝑐

𝐴𝜎𝑦 𝜎𝑥+𝜎𝑦

Ion motion remains stable when  -2 ≤ Tr(M) ≤ 2

𝑀 =
1 − 𝑡𝑏𝑘 𝑡𝑏
−𝑘 1

,    −2 ≤ 2 − 𝑡𝑏𝑘 ≤ 2, 0 ≤ 𝑡𝑏𝑘 ≤ 4

2𝑁𝑏𝑟𝑝𝑐𝑡𝑏

𝐴𝜎𝑦 𝜎𝑥 + 𝜎𝑦
≤ 4, It is satisfied if 𝐴 ≥ 𝐴𝑐

Critical mass 𝐴𝑐 =
𝑁𝑏𝑟𝑝𝑐𝑡𝑏

2𝜎𝑦 𝜎𝑥+𝜎𝑦
 : This condition defines a critical mass

that ions performs stable oscillation and trapped in electron beam when their atomic mass exceeds 𝐴𝑐. 
𝐴𝑐 is the minimum atomic mass of ions that can be trapped.
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Ion production rate 𝒏𝒊(𝒎
−𝟏) created by a bunch with population 𝑵𝒆 is

𝑛𝑖 = 𝑑𝑚𝜎𝑚𝑁𝑒

molecular density 𝑑𝑚 𝑚−3 =
𝑃

𝑘𝑇
= 2.42 × 1020 𝑃 [𝑝𝑎𝑠𝑐𝑎𝑙]

𝜎𝐶𝑂 = 1.9 × 10−22𝑚2

𝜎𝐻2 = 3.2 × 10−32𝑚2

Ion line density at the tail of bunch fraction is

λ𝑖 = 𝜎𝑖𝑜𝑛
𝑃

𝑘𝑇
𝑁𝑒𝑛𝑏

(𝑁𝑒, 𝑛𝑏 ∶ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 𝑖𝑛 𝑎 𝑏𝑢𝑛𝑐ℎ 𝑎𝑛𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑛𝑐ℎ𝑒𝑠)

λ𝑖 = 0.045𝑁𝑒𝑛𝑏𝑃 𝑝𝑎𝑠𝑐𝑎𝑙

= 6𝑁𝑒𝑛𝑏 𝑃 [𝑇𝑜𝑟𝑟] for CO

effective ion density : ρ𝑖 𝑒𝑓𝑓 =
λ𝑖

3

2
𝜎𝑦 𝜎𝑥+𝜎𝑦
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𝑊𝑦 =
𝐹𝑑𝑠׬

𝑞𝑖𝑞𝑒∆𝑦
=
׬
𝑑𝑝
𝑑𝑡

𝑑𝑠

𝑞𝑖𝑞𝑒∆𝑦
=

𝑐∆𝑝

𝑞𝑖𝑞𝑒∆𝑦

=
𝑐∆𝑝

𝑁𝑒𝑟𝑒𝑚𝑒𝑐
2∆𝑦

=
∆𝑣

𝑁𝑒𝑟𝑒𝑐 ∆𝑦
(∆𝑣 ∶ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑘𝑖𝑐𝑘 𝑏𝑦 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑏𝑢𝑛𝑐ℎ 𝑓𝑟𝑜𝑚 𝑖𝑜𝑛 𝑐𝑙𝑜𝑢𝑑)

=
𝛾

𝑁𝑒 𝑟𝑒

∆𝑦′

∆𝑦

𝑞𝑒 = 𝑁𝑒𝑒, 𝑞𝑖= 𝑒
∆𝑝 = 𝑚𝑒∆𝑣

∆𝑦′ =
∆𝑦

∆𝑠
=

∆𝑦

𝛾𝑐∆𝑡
=
∆𝑣

𝛾𝑐

Estimation of wake field amplitude of ion cloud

Wake force of ion cloud generated from a displaced electron bunch by ∆𝑦 is given by
transverse kick per unit of both charges per unit of transverse displacement 

𝑚𝑒 ሷ𝑦𝑒 = 𝑒𝐸𝑦
𝑖𝑜𝑛 , 𝐸𝑦 =

λ 𝑦

2𝜋𝜀0 𝜎𝑦(𝜎𝑥 + 𝜎𝑦)

Equation of motion for electron
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ሷ𝑦𝑒 =
𝑒 λ𝑖 𝑦𝑖

2𝜋𝜀0𝑚𝑒 𝜎𝑦(𝜎𝑥+𝜎𝑦)
(𝜎𝑦 = 𝜎𝑦𝑖

2 + 𝜎𝑦𝑒
2 , 𝜎𝑦𝑖 =

𝜎𝑦𝑒

2
, 𝜎𝑦 =

3

2
𝜎𝑦 , 𝜎𝑥=

3

2
𝜎𝑥)

                   

ሶ𝑦𝑒 = ׬
𝑒 λ𝑖 𝑦𝑖

2𝜋𝜀0𝑚𝑒
3

2
𝜎𝑦(𝜎𝑥+𝜎𝑦)

𝑑𝑡

= ׬
𝑒 λ𝑖 2𝑐

2

4𝜋𝜀0𝑚𝑒𝑐
2

𝑑𝑡 𝑦𝑖
3

2
𝜎𝑦(𝜎𝑥+𝜎𝑦)

λ𝑖 =
𝑒𝑁𝑖

𝑙𝑠𝑒𝑝

= න
𝑟𝑒 λ𝑖 2𝑐

2 𝑙𝑠𝑒𝑝
𝑐

𝑦𝑖

𝑒
3
2 𝜎𝑦(𝜎𝑥 + 𝜎𝑦)

(𝑑𝑡 =
𝑙𝑠𝑒𝑝
𝑐
)

=
2𝑟𝑒𝑐 𝑁𝑖 𝑦𝑖

3
2𝜎𝑦(𝜎𝑥 + 𝜎𝑦)

               ሶ𝑦𝑒 = ∆𝜈 =
2𝑟𝑒𝑐𝑁𝑖𝑦𝑖

3

2
𝜎𝑦(𝜎𝑥+𝜎𝑦)
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𝑀𝑖𝑜𝑛 ሷ𝑦𝑖 = 𝑞𝑖𝐸𝑦
𝑒𝑙𝑒𝑐 ሶ𝑦𝑖 = ∆𝑣𝑦𝑖 =

2𝑟𝑝 𝑐 𝑁𝑒 ∆𝑦

𝐴
3

2
𝜎𝑦(𝜎𝑥+𝜎𝑦)

𝑦𝑖 =
∆𝑣𝑦𝑖

𝜔𝑖

𝜔𝑖 = 𝑐
4𝑁𝑒𝑟𝑝

3𝐿𝑠𝑒𝑝𝜎𝑦 𝜎𝑥 + 𝜎𝑦 𝐴

1
2

𝑊𝑦 =
𝛾

𝑁𝑒𝑟𝑒

∆𝑦′

∆𝑦
( ∆𝑣 =

2𝑟𝑒𝑐𝑁𝑖𝑦𝑖
3

2
𝜎𝑦(𝜎𝑥+𝜎𝑦)

, ∆𝑦′ =
∆𝑣

𝛾𝑐
)

=
𝛾

𝑁𝑒𝑟𝑒
∗

2𝛾𝑒𝑐𝑁𝑖𝑦𝑖
3
2
𝜎𝑦 𝜎𝑥 + 𝜎𝑦

∗
1

𝛾𝑐
∗
1

∆𝑦

=
𝛾

𝑁𝑒𝛾𝑒
∗

2𝛾𝑒𝑐𝑁𝑖
3
2
𝜎𝑦 𝜎𝑥 + 𝜎𝑦

∗
1

𝛾𝑐
∗

2𝑟𝑝𝑐𝑁𝑒 ∆𝑦

𝐴
3
2
𝜎𝑦 𝜎𝑥 + 𝜎𝑦 ∆𝑦

∗
1

𝑐
4𝑁𝑒𝑟𝑝

3𝐿𝑠𝑒𝑝𝜎𝑦 𝜎𝑥 + 𝜎𝑦 𝐴

1
2

= 𝑁𝑖
4

3

1

𝜎𝑦 𝜎𝑥 + 𝜎𝑦

3
2 𝐿𝑠𝑒𝑝𝑟𝑝

𝐴𝑁𝑒

Equation of motion for ion is

Amplitude of wake function is
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1332 bunches

No feedback

with feedback per 50 turns

400 mA

Example : Fast-ion instability

0.1 nT

with feedback per 50 turns

No feedback



100 bunches with 4 trains

400 mA

No feedback

with feedback per 50 turns

0.1 nT

1 train (1332 and 400 bunches) 

1332 bunches

400 bunches

Example : Fast-ion instability



Strong Head Tail Instability



The macroparticle model

• Some of the important aspects of the head-tail instability can 
be understood in terms of a simple model of a bunch as 
consisting of just two particles, each with charge equal to half 
the total bunch charge. 

• We shall base our analysis of the head-tail instability on this 
model of a bunch consisting of two macroparticles.  



Transverse motion with wake fields:         
equations of motion

• Consider a “bunch” consisting of two particles in a storage ring, 
with particle 1 ahead of particle 2 by a distance of order of the 
bunch length σz. 

• We assume that the particles are ultra-relativistic. Both particles 
will perform betatron oscillations as they travel around the ring.

• In the absence of wake fields, the betatron frequency is 
determined solely by the focusing in the lattice. 

• When wake fields are present, the trailing particle will experience 
additional forces from the wake field generated by the leading 
particle. Synchrotron motion means that the leading and trailing 
particles interchange roles after half a synchrotron period, Ts.



Transverse motion with wake fields: equations 
of motion



Transverse motion with wake fields: equations 
of motion

• Because the particles are ultra-relativistic, the motion of 
particle 1 will not be affected by any wake fields from particle 
2. The equation of motion for transverse oscillations of 
particle 1 can be written :  

where the dots indicate second derivative with respect to time, 
and 𝜔𝛽 is the betatron oscillation frequency.

ሷ𝑦1 +𝜔𝛽
2𝑦1 = 0



Transverse motion with wake fields: equations 
of motion

• Particle 2 will observe the wake field from particle 1. When the particles pass 
through a section with wake function W⊥(−∆z), the transverse deflection of particle 
2 from the wake field will be: 

each particle has total charge 𝑒𝑁0/2 and total energy 𝐸0 𝑁0 /2.    

y1 is the transverse co-ordinate of particle 1, and the particles 

have longitudinal separation Δ𝑧.

• The deflection can be included as a “driving force” in the equation of motion for 
particle 2. Taking into account the usual betatron oscillation, the equation of motion 
is 

where 𝐿 is the length of the accelerator with wake function W⊥(− Δ𝑧)

Δ𝑝2 = −
𝑒2𝑁0
2𝐸0

𝑦1𝑊⊥ −Δ𝑧

ሷ𝑦2 +𝜔𝛽
2𝑦2 = −

𝑐2𝑒2𝑁0
2𝐸0

𝑦1
𝑊⊥ −Δ𝑧

𝐿

(= −
𝑐2 𝐹𝑦
𝐸0𝑁2

= −
𝑐2𝑀𝑑

𝐸0𝑁2𝐿
), (𝑀𝑑 = 𝑦1 (𝑒 𝑁0/2)

2𝑊⊥ −Δ𝑧



Transverse motion with wake fields: equations 
of motion
• We can make a linear approximation for the wake function, so that  

𝑊0 is a constant and σz is  bunch length. The wake function per unit 
length is 𝑊0 ∆z/C0 σz, where C0 is the circumference of the ring.  We 
assume that the beta function is constant, so that the betatron frequency 
𝜔𝛽 is also constant.   The equations of motion are:

 

constant A is defined

We have taken the synchrotron motion into account by writing:  
where 𝜔s is the synchrotron frequency. The particles start with zero separation at t= 0. 

𝑊⊥ −Δ𝑧 =
Δ𝑧

𝜎𝑧
𝑊0

ሷ𝑦1 + 𝜔𝛽
2𝑦1 = 0

ሷ𝑦2 + 𝜔𝛽
2𝑦2 = −𝑖𝐴𝑦1𝑒

−𝑖𝜔𝑠𝑡

𝐴 =
𝑐2𝑒2𝑁0
2𝐸0

𝑊0

𝐶0

Δ𝑧 = 𝑖𝜎𝑧𝑒
−𝑖𝜔𝑠𝑡,



• For particle 1, the solution is straightforward 

• Particle 2 has a natural oscillation at frequency 𝜔𝛽, but is also subject to 
a driving force at frequency 𝜔𝛽 + 𝜔𝑠. Thus, we write a solution to the 
equation of motion 

• The constants 𝐵1 and 𝐵2 can be determined from the initial condition 
𝐵1 + 𝐵2 = 𝑦2(0), and by substituting the solution into the equation of 
motion. Assuming that 𝜔𝑠 ≪ 𝜔𝛽

Solution to the equations of motion

We find from the solution to the equations of motion:

𝑇𝑠 = 2/𝜔𝛽 is the synchrotron period, and the constant 𝑎 is given by

𝑦1 𝑡 = 𝑦1 0 e−𝑖𝜔𝛽𝑡

𝑦2 𝑡 = 𝐵1𝑒
−𝑖𝜔𝛽𝑡 + 𝐵2𝑒

−𝑖 𝜔𝛽+𝜔𝑠 𝑡

𝐵2 ≈
𝑖𝐴𝑦! 0

2𝜔𝛽𝜔𝑠
, 𝐵1 ≈ 𝑦2 0 −

𝑖𝐴𝑦1 0

2𝜔𝛽𝜔𝑆

𝑦1
𝑦2

≈ 𝑒−𝑖𝜔𝛽𝑇𝑠/2 1 0
𝑖𝑎 1

𝑦1
𝑦2 𝑡=0



Solution to the equations of motion

After half a synchrotron period, the roles of the particles are reversed, so that particle 2 sees 
no wake field, but particle 1 experiences the wake field from particle 2

By symmetry, we can write down, for the transverse co-ordinates of the particles 
after a full synchrotron period:

𝑎 =
𝐴

2𝜔𝛽𝜔𝑠
(𝑒

𝑖𝜔𝛽𝑇𝑠
2 − 1)

𝑦1
𝑦2 𝑡=𝑇𝑠

≈ 𝑒−
𝑖𝜔𝛽𝑇𝑠
2

1 𝑖𝑎
0 1

𝑦1
𝑦2 𝑡=𝑇𝑠/2

𝑦1
𝑦2 𝑡=𝑇𝑠

≈ 𝑒−𝑖𝜔𝛽𝑇𝑠 1 𝑖𝑎
0 1

1 0
𝑖𝑎 1

𝑦1
𝑦2 𝑡=0

≈ 𝑒−𝑖𝜔𝛽𝑇𝑠 1 − 𝑎2 𝑖𝑎
𝑖𝑎 1

𝑦1
𝑦2 𝑡=0



Solution to the equations of motion
This is     1 − 𝑎2 − 𝜆 1 − 𝜆 + 𝑎2 = 0

Since the matrix has a unit determinant, the diagonalized matrix 

will also, so we have 𝜆1𝜆2 = 1, 𝜆1,2 = exp ∓𝑖𝜙

and

1 − 𝑎2 − exp 𝑖𝜙 1 − exp 𝑖𝜙 + 𝑎2 = 0

−exp 𝑖𝜙 − 1 − 𝑎2 exp 𝑖𝜙 + exp 𝑖2𝜙 = 0

1 − 𝑎2 = exp −𝑖𝜙 − 1 + exp 𝑖𝜙 = 2𝑐𝑜𝑠𝜙 − 1

𝑎2 = 2 − 2𝑐𝑜𝑠𝜙 ⇒ 𝑎 = 2 sin
𝜙

2

The normal mode eigenvectors in the 𝑦1, 𝑦2 , basis are

𝜁1 =
−exp(−𝑖

𝜙

2
)

1

, 𝜁2 =
exp(𝑖

𝜙

2
)

1

, 𝑎  2



Transverse motion with wake fields: stability 
condition
“Transfer matrix” 𝑅 for the motion of the two macroparticles over a full 
synchrotron period is

The motion of the particles will be stable if the trace of the transfer 
matrix has magnitude less than 2,  

Using                        and assuming the maximum magnitude for

𝑎 =|A|/𝜔𝛽𝜔𝑠, the stability condition becomes

𝜈𝛽 and 𝜈𝑠 are the betatron and synchrotron tunes.

𝑅 = 𝑒−𝑖𝜔𝛽𝑇𝑠 1 − 𝑎2 𝑖𝑎
𝑖𝑎 1

ȁ2 − ȁ𝑎2 < 2

𝑎 =
𝐴

2𝜔𝛽𝜔𝑠
(𝑒

𝑖𝜔𝛽𝑇𝑠
2 − 1)

𝑐2𝑒2𝑁0𝑊𝑜

2𝜔𝛽𝜔𝑠𝐶0𝐸0
< 2 , 𝑁0 <

16𝜋2𝜈𝛽𝜈𝑠𝐸0

𝑒2𝑊0𝐶0



Transverse motion with wake fields: stability 
condition

• It expresses a limit on the bunch population in a storage ring, above which 
the betatron oscillation amplitudes of particles in the bunch will increase 
exponentially, driven by the transverse wake fields. It is known as the “fast 
head-tail instability.

• The presence of transverse wake fields will also lead to a shift in the frequency 
of betatron oscillations performed by the particles. 

• We can find the frequency shift from the solution to the equations of motion. 
The frequencies of the normal modes are given by the eigenvalues of the full 
4×4 transfer matrix, describing the changes in co-ordinates and the transverse 
momenta of the particles over one synchrotron period.



Transverse motion with wake fields: stability 
condition

• If the wake fields are weak, then the normal mode frequencies 
are purely real: the particles perform betatron oscillations with 
constant amplitude. 

• If the wake fields are increased (e.g. by increasing the bunch 
charge) the betatron frequencies acquire non-zero imaginary 
parts. 

• At this point the oscillation amplitude of one mode will be 
damped, but the amplitude of the other mode will 
grow(exponentially)..



Transverse motion with wake fields: stability 
condition

Real and imaginary parts (solid and dashed lines, respectively)
of normal mode frequency shifts (in units of the synchrotron 
frequency), as a function of wake field strength.



Transverse mode-coupling instability

• Wake fields shift the mode oscillation frequencies: if the wakefields are 
strong enough, the frequencies of two different mode scan become 
equal. When this happens, the frequencies acquire non-zero imaginary 
parts, indicating the exponential growth of the perturbation, i.e. the 
onset of an instability, known as the “transverse mode-coupling 
instability” (or strong head-tail instability)



Strong Head-tail instability : summary

• A simple model of a transverse single-bunch instability can be developed 
using a model of the bunch as two macroparticles. 

• With some assumptions, and ignoring chromaticity, it is found that there 
is a threshold (in terms of the bunch charge, or the wake field strength) 
above which the betatron oscillations of the particles grow exponentially. 
The instability in this case is known as the fast head-tail instability.

• A more sophisticated model of transverse single-bunch instabilities, 
including the transverse mode-coupling instability can be developed 
using the Vlasov equation to describe the evolution of a charge 
distribution in transverse and longitudinal directions.



Effect of chromaticity

We have also ignored some important effects, including (for example) 
chromaticity. If chromaticity is taken into account, then the behaviour of 
the system is modified: the instability in this case is known as the “head-
tail instability” (rather than the “fast head-tail instability”). 

.
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Head-Tail Instability

• Betatron and synchrotron motions are decoupled in strong head-tail 
instability. Betatron frequency depends on energy error 𝛿=ΔE/E  of the 
particle. Betatron frequency for off-momentum particle is

𝜔𝛽 𝛿 = 𝜔𝛽 1 + 𝜉𝛿

(𝜔𝛽: betatron frequency for on-momentum,   𝜉  : chromaticity)

𝜙𝛽 𝑠 = 𝜔𝛽׬ 𝛿
𝑑𝑠

𝑐
= 𝜔𝛽׬ 1 + 𝜉𝛿

𝑑𝑠

𝑐
= 𝜔𝛽(

𝑠

𝑐
+ 𝜉 𝛿׬

𝑑𝑠

𝑐
)

= 𝜔𝛽

𝑠

𝑐
−

𝜉

𝑐η
න𝑧′ 𝑑𝑠

= 𝜔𝛽

𝑠

𝑐
−

𝜉

𝑐𝜂
𝑧 𝑠

Accumulated betatron phase is

(𝑧′= −𝜂𝛿)
𝜂: slippage factor

(𝜂 =1/2-α, 𝜂=Δτ/τ/dp/p) 

In the absence of wake field, deviation of betatron phase is determined by longitudinal 
position z, not 𝛿.



Head-Tail Instability

𝑧1 = Ƹ𝑧 sin
𝜔𝑠

𝑐
𝑠 , 𝑧2 = −𝑧1

0 <
𝑠

𝑐
<

𝜋

𝜔𝑠
.

𝜋

𝜔𝑠
<
𝑠

𝑐
<
2𝜋

𝜔𝑠

𝑦1 𝑠 = ෦𝑦1𝑒
−𝑖𝜙𝛽1(𝑠) = ෦𝑦1𝑒

−𝑖[𝜔𝛽
𝑠
𝑐−

𝜔𝛽

𝑐𝜂 𝜉𝑧1] = ෦𝑦1𝑒
−𝑖[𝜔𝛽

𝑠
𝑐−

𝜔𝛽

𝑐𝜂 𝜉
Ƹ𝑧 sin

𝜔𝑠
𝑐 𝑠 ]

𝑦2 𝑠 = ෦𝑦2𝑒
−𝑖𝜙𝛽2(𝑠) = ෦𝑦2𝑒

−𝑖[𝜔𝛽
𝑠
𝑐−

𝜔𝛽

𝑐𝜂 𝜉𝑧2] = ෦𝑦2𝑒
−𝑖[𝜔𝛽

𝑠
𝑐+

𝜔𝛽

𝑐𝜂 𝜉
Ƹ𝑧 sin

𝜔𝑠
𝑐 𝑠 ]

𝜉

𝜂
> 0

𝜉

𝜂
< 0

Δ𝜙𝛽 = 𝜙𝛽1 − 𝜙𝛽2 = 𝜔𝛽
𝑠

𝑐
−

𝜔𝛽

𝑐𝜂
𝜉 Ƹ𝑧 sin

𝜔𝑠

𝑐
𝑠 − 𝜔𝛽

𝑠

𝑐
+

𝜔𝛽

𝑐𝜂
𝜉 Ƹ𝑧 sin

𝜔𝑠

𝑐
𝑠  =  -2

𝜔𝛽

𝑐𝜂
𝜉 Ƹ𝑧 sin

𝜔𝑠

𝑐
𝑠

𝜉𝜔𝛽

𝑐𝜂
Ƹ𝑧

We consider two macroparticles whose synchrotron oscillations

Particle 1 leads particle 2 during and trails it during

Free betatron oscillations of two particles are

Leading particle lags in betatron phase relative to trailing particle if The situation reverses if 

is head-tail phase. It is physical origin of head-tail instability.



The motion of particle 2 during 0 <
𝑠

𝑐
<

𝜋

𝜔𝑠
 in the presence of wake field.

𝑊1 𝑧 = ቊ
−𝑊0

0
if 0 > 𝑧 > −(bunch length)

otherwise

Eq. of motion 𝑦2
′′ +

𝜔𝛽 𝛿2

𝑐

2

𝑦2 =
𝑁𝑟0𝑊0

2𝛾𝐶
𝑦1

𝜔𝛽 𝛿2 = 𝜔𝛽 1 + 𝜉𝛿2 = 𝜔𝛽 1 + 𝜉 −
𝑧′

𝜂
= 𝜔𝛽 1 +

𝜉 Ƹ𝑧𝜔𝑠

𝑐𝜂
cos

𝜔𝑠𝑠

𝑐
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𝑦2
′′ =

𝑑

𝑑𝑠

𝑑

𝑑𝑠
𝑦2 =

𝑑

𝑑𝑠

𝑑

𝑑𝑠
ො𝑦2 exp −𝑖𝜔𝛽

𝑠

𝑐
− 𝑖

𝜉𝜔𝛽

𝑐𝜂
Ƹ𝑧 sin

𝜔𝑠𝑠

𝑐

=
𝑑

𝑑𝑠
ቊ

ቋ

𝑑 ො𝑦2
𝑑𝑠

exp −𝑖𝜔𝛽

𝑠

𝑐
− 𝑖

𝜉𝜔𝛽

𝑐𝜂
Ƹ𝑧 sin

𝜔𝑠𝑠

𝑐

− 𝑖
𝜔𝛽

𝑐
+
𝜉𝜔𝛽

𝑐𝜂
Ƹ𝑧
𝜔𝑠

𝑐
cos

𝜔𝑠𝑠

𝑐
ො𝑦2 exp −𝑖𝜔𝛽

𝑠

𝑐
− 𝑖

𝜉𝜔𝛽

𝑐𝜂
Ƹ𝑧 sin

𝜔𝑠𝑠

𝑐

≈
𝑑2 ො𝑦2
𝑑𝑠2

exp −𝑖𝜔𝛽

𝑠

𝑐
− 𝑖

𝜉𝜔𝛽

𝑐𝜂
Ƹ𝑧 sin

𝜔𝑠𝑠

𝑐
− 2𝑖

𝜔𝛽

𝑐

𝑑 ො𝑦2
𝑑𝑠

exp −𝑖𝜔𝛽

𝑠

𝑐
− 𝑖

𝜉𝜔𝛽

𝑐𝜂
Ƹ𝑧 sin

𝜔𝑠𝑠

𝑐

−
𝜔𝛽
2

𝑐2
ො𝑦2 exp −𝑖𝜔𝛽

𝑠

𝑐
− 𝑖

𝜉𝜔𝛽

𝑐𝜂
Ƹ𝑧 sin

𝜔𝑠𝑠

𝑐

𝜉𝜔𝛽

𝑐𝜂
Ƹ𝑧 is very small.

ො𝑦2 is slowly varying ⇒ ො𝑦2
′′ term is ignored. 
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−2𝑖
𝜔𝛽

𝑐

𝑑 ො𝑦2
𝑑𝑠

exp −𝑖𝜔𝛽

𝑠

𝑐
− 𝑖

𝜉𝜔𝛽

𝑐𝜂
Ƹ𝑧 sin

𝜔𝑠𝑠

𝑐
−
𝜔𝛽
2

𝑐2
ො𝑦2 exp −𝑖𝜔𝛽

𝑠

𝑐
− 𝑖

𝜉𝜔𝛽

𝑐𝜂
Ƹ𝑧 sin

𝜔𝑠𝑠

𝑐

+
𝜔𝛽
2

𝑐2
ො𝑦2 exp −𝑖𝜔𝛽

𝑠

𝑐
− 𝑖

𝜉𝜔𝛽

𝑐𝜂
Ƹ𝑧 sin

𝜔𝑠𝑠

𝑐
≈
𝑁𝑟0𝑊0

2𝛾𝐶
ො𝑦1 exp −𝑖𝜔𝛽

𝑠

𝑐
+ 𝑖

𝜉𝜔𝛽

𝑐𝜂
Ƹ𝑧 sin

𝜔𝑠𝑠

𝑐

∴ ො𝑦2
′ ≈

𝑖𝑁𝑟0𝑊0𝑐

4𝛾𝐶𝜔𝛽
ො𝑦1 0 exp 2𝑖

𝜉𝜔𝛽

𝑐𝜂
Ƹ𝑧 sin

𝜔𝑠𝑠

𝑐

𝑦2
′′ +

𝜔𝛽
2

𝑐2
1 +

𝜉 Ƹ𝑧𝜔𝑠

𝑐𝜂
cos

𝜔𝑠𝑠

𝑐

2

𝑦2 =
𝑁𝑟0𝑊0

2𝛾𝐶
𝑦1

𝑦2
′′ +

𝜔𝛽
2

𝑐2
𝑦2 ≈

𝑁𝑟0𝑊0

2𝛾𝐶
𝑦1

𝑦2
′′ ≈ −2𝑖

𝜔𝛽

𝑐

𝑑 ො𝑦2
𝑑𝑠

exp −𝑖𝜔𝛽

𝑠

𝑐
− 𝑖

𝜉𝜔𝛽

𝑐𝜂
Ƹ𝑧 sin

𝜔𝑠𝑠

𝑐
−
𝜔𝛽
2

𝑐2
ො𝑦2 exp −𝑖𝜔𝛽

𝑠

𝑐
− 𝑖

𝜉𝜔𝛽

𝑐𝜂
Ƹ𝑧 sin

𝜔𝑠𝑠

𝑐
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Head-tail phase 
𝜉𝜔𝛽 Ƹ𝑧

𝑐𝜂
≪ 1.    Doing Taylor expansion 

ො𝑦2 𝑠 = ො𝑦2 0 +
𝑖𝑁𝑟0𝑊0𝑐

4𝛾𝐶𝜔𝛽
ො𝑦1 0 න

0

𝑠

1 +
2𝑖𝜉𝜔𝛽

𝑐𝜂
Ƹ𝑧 sin

𝜔𝑠𝑠

𝑐
𝑑𝑠

= ො𝑦2 0 +
𝑖𝑁𝑟0𝑊0𝑐

4𝛾𝐶𝜔𝛽
ො𝑦1 0 𝑠 + 𝑖

2𝜉𝜔𝛽

𝜂𝜔𝑠
Ƹ𝑧 1 − cos

𝜔𝑠𝑠

𝑐

① Resonant response term ② Chromatic term

① is responsible for the strong head-tail instability
② is small because it is proportional to the head-tail phase

Chromatic term is 90° out of phase from the resonant term.
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= ෤𝑦2 0 +
𝑖𝜋𝑁𝑟0𝑊0𝑐

2

4𝛾𝐶𝜔𝛽𝜔𝑠
1 + 𝑖

4𝜉𝜔𝛽 Ƹ𝑧

𝜋𝑐𝜂
෤𝑦1(0)

ቚ෤𝑦2
𝑠=

𝜋𝑐
𝜔𝑠

= ෤𝑦2 0 +
𝑖𝑁𝑟0𝑊0𝑐

4𝛾𝐶𝜔𝛽
෤𝑦1 0

𝜋𝑐

𝜔𝑠
+ 𝑖

2𝜉𝜔𝛽 Ƹ𝑧

η𝜔𝑠
∙ 2

= ෤𝑦2 0 + 𝑖Υ ෤𝑦1(0)

𝑦1
′′ +

𝜔𝛽

𝑐

2

𝑦1 = 0

෤𝑦1 𝑠 = ෤𝑦1 0 𝑒−𝑖𝜔𝛽
𝑠/𝑐

Υ =
𝜋𝑁𝑟0𝑊0𝑐

2

4𝛾𝐶𝜔𝛽𝜔𝑠
(1 + 𝑖

4𝜉𝜔𝛽 Ƹ𝑧

𝜋𝑐𝜂
)

𝑠 = 0 𝑠 =
𝜋𝑐

𝜔𝑠

෤𝑦1
෤𝑦2 𝑠=

𝜋𝑐

𝜔𝑠

=
1 0
𝑖Υ 1

෤𝑦1
෤𝑦2 s=0

𝜔𝛽 ≫ 𝜔𝑠
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Transformation from to

𝜉 → 0 ∶ 𝑠𝑡𝑟𝑜𝑛𝑔 ℎ𝑒𝑎𝑑 − 𝑡𝑎𝑖𝑙 𝑖𝑛𝑠𝑡𝑎𝑣𝑖𝑙𝑖𝑡𝑦
𝜉 ≠ 0 ∶ ℎ𝑒𝑎𝑑 − 𝑡𝑎𝑖𝑙 𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦



෤𝑦1
෤𝑦2 𝑠=

2𝜋𝑐

𝜔𝑠

=
1 𝑖Υ
0 1

෤𝑦1
෤𝑦2 𝜋𝑐

𝜔𝑠

𝑓𝑜𝑟
𝜋𝑐

𝜔𝑠
< 𝑠 <

2𝜋𝑐

𝜔𝑠
, ෤𝑦1 → ෤𝑦2, ෤𝑦2 → ෤𝑦1

෤𝑦1
෤𝑦2 𝑠=

2𝜋𝑐

𝜔𝑠

=
1 𝑖Υ
0 1

1 0
𝑖Υ 1

෤𝑦1
෤𝑦2 0

= 1 − Υ2 𝑖Υ
𝑖Υ 1

෤𝑦1
෤𝑦2 0

1 − Υ2 − 𝜆 1 − 𝜆 + Υ2 = 0

𝜆2 − 2𝜆 𝑐𝑜𝑠Υ + 1 = 0

𝜆2 − 2𝜆 1 +
Υ2

2
+ 1 = 0

𝜆 − 𝑒𝑖Υ + 𝑒−𝑖Υ 𝜆 + 𝑒𝑖Υ ∙ 𝑒−𝑖Υ = 0

λ
±
≈ 𝑒±𝑖Υ
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+𝑚𝑜𝑑𝑒 ∶ 𝑡𝑤𝑜 𝑚𝑎𝑐𝑟𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑒 𝑖𝑛 𝑝ℎ𝑎𝑠𝑒
− 𝑚𝑜𝑑𝑒 ∶ 𝑡𝑤𝑜 𝑚𝑎𝑐𝑟𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑝ℎ𝑎𝑠𝑒

Eigenvalue of this transformation matrix  
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• Imaginary part of Υ gives a growth of betatron oscillation.

+ mode is damped if 
𝜉

𝜂
> 0 and antidamped if  

𝜉

𝜂
< 0.

- mode is damped  if 
𝜉

𝜂
< 0 and antidamped if  

𝜉

𝜂
> 0.

• The only value of 𝜉 that assures a stable beam is 𝜉=0.

However, using the Vlasov equation, two particle model has overestimated       

growth rate of – mode.

• With presence of some stabilizing mechanisms (such as Landau damping, 
radiation damping), it leads us to choose slightly positive values for 𝜉 for 
operation.

𝜏±
−1 =

±𝑖Υ

T𝑠
= ∓

𝑁𝑟0𝑊0𝑐𝜉 Ƹ𝑧

2𝜋𝛾𝐶𝜂
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