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Fast-ion instability

Bl In electron storage rings, residual gas molecules can be ionized by the beam. The resulting
positive ions are trapped in the electric field of the beam, and accumulate to high density.
- The fields of the ions can then drive beam instabilities.

B While electrons move rapidly on the time scale of a single bunch passage, ions move relatively
slowly. The dynamical behaviour is then somewhat different.

B If a storage ring is uniformly filled with electron bunches, then ions accumulate over many turns.
This leads to the well-known phenomenon of ion trapping, which is usually solved by including
"gaps" in the fill pattern.

B Under certain conditions, sufficient ions can accumulate in the passage of a small number of
bunches to drive an instability, known as the "fast ion instability".

Electron Bunch train lons



Fast-ion instability

Equation of motion of an ion due to electric field of electron bunch
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n : number of bunches per beam, [, : bunch length A : atomic mass of ion
N, : number of electron / bunch g; : charge of ion  M;,,,: mass of ion



Fast-ion instability

Mechanism of ion trapping in bunch can be modelled as the ions experience a focusing force
from a bunch and drift in bunch gaps.

Vertical displacement of trapped ion at a time t and a position s is modelled as
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that ions performs stable oscillation and trapped-in_electron beam when their atomic mass exceeds A..
A, is the minimum atomic mass of ions that can be trapped.

Nprycty . . . .
P : This condition defines a critical mass




Fast-ion instability

lon production rate n;(m™1!) created by a bunch with population N, is
Nn; = dyom N,

molecular density d,,,(m=3) = I:;T = 2.42 x 102° P [pascal]

Oco = 1.9 X 10_227?12
Oy, = 3.2 X 1032m?2

lon line density at the tail of bunch fraction is
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(N,,ny : number of electrons in a bunch and number of bunches)
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Fast-ion instability

Estimation of wake field amplitude of ion cloud

Wake force of ion cloud generated from a displaced electron bunch by Ay is given by
transverse kick per unit,of both charges per unit of transverse displacement
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Fast-ion instability

Equation of motion for ion is
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Example : Fast-ion instability

1332 bunches 400 mA 0.1 nT

E Gnuplot (window id : 0)

B &8 @ # @@ a » ?

0.0010000 g T

0.0001000 ¢

0.0000100

Sqrt(Jy)

0.0000010 |

with feedback per 50 turns

No feedback

I I '30fori.10' usilng 16 o+
‘fort.10' using 1.6 x

0.0000001 '
0 200

1475.95, 0.00203681

400

600

800 1000 1200 1400 1600 1800 2000
Number of turns

B Gnuplot (window id : 0) — O
Em & g # @ a a = 7
0.0003 T T T T

'30fort.8" using 14 +
' '8 usi 4
0.0002 300fort.8' using 1

0.0001

0

-0.0001

Average of Y (m)

-0.0002

-0.0003

-0.0004 No feedback

with feedback per 50 tur

-0.0005 ' L
o 200 400 600 800 1000 1200

Number of bunches

1400




Example : Fast-ion instability
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Strong Head Tail Instability



The macroparticle model

« Some of the important aspects of the head-tail instability can
be understood in terms of a simple model of a bunch as
consisting of just two particles, each with charge equal to half
the total bunch charge.

« We shall base our analysis of the head-tail instability on this
model of a bunch consisting of two macroparticles.



Transverse motion with wake fields:
equations of motion

« Consider a "bunch” consisting of two particles in a storage ring,
with particle 1 ahead of particle 2 by a distance of order of the
bunch length o,

« We assume that the particles are ultra-relativistic. Both particles
will perform betatron oscillations as they travel around the ring.

* In the absence of wake fields, the betatron frequency is
determined solely by the focusing in the lattice.

« When wake fields are present, the trailing particle will experience
additional forces from the wake field generated by the leading
particle. Synchrotron motion means that the leading and trailing
particles interchange roles after half a synchrotron period, T,




Transverse motion with wake fields: equations

of motion

o<t<T,/2
Y 4

Particle 1
Performs betatron oscillations

o

Particle 2 I ®
Performs betatron oscillations
including driving term from
wake field of Particle 1

T,/2<t<T,
Y 4

IV

Particle 2
Performs betatron oscillations

o

Particle 1 —I—.

Performs betatron oscillations
including driving term from
wake field of Particle 2

>
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Transverse motion with wake fields: equations
of motion

 Because the particles are ultra-relativistic, the motion of
particle 1 will not be affected by any wake fields from particle
2. The equation of motion for transverse oscillations of
particle 1 can be written :
Vit wé)ﬁ =0

where the dots indicate second derivative with respect to time,
and wyg is the betatron oscillation frequency.



Transverse motion with wake fields: equations
of motion

« Particle 2 will observe the wake field from particle 1. When the particles pass
through a section with wake function W (—Az), the transverse deflection of particle

2 from the wake field will be: e2N,
Ap; = — 2E, y1W,(—Az)

each particle has total charge eN,/2 and total energy E, N, /2.
y, Is the transverse co-ordinate of particle 1, and the particles
have longitudinal separation Az.

» The deflection can be included as a “driving force” in the equation of motion for
particle 2. Taking into account the usual betatron oscillation, the equation of motion
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where L is the length of the accelerator with wake function W, (— Az)
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Transverse motion with wake fields: equations

of motion

« We can make a linear approximation for the wake function, so that
Wy (~02) = =W,

Z

W, is a constant and o, is bunch length. The wake function per unit
length is W, Az/C, 0,, where C, is the circumference of the ring. We
assume that the beta function is constant, so that the betatron frequency
wg is also constant. The equations of motion are:

Vit wé)ﬁ =0
Va2 + wé)’z = —idye”'¥st
< defined A= ce*Noy W,
constant A Is define = 2By Gy

We have taken the synchrotron motion into account by writing: Az = ig,e~'®st,
where w. is the synchrotron frequency. The particles start with zero separation at t= 0.



Solution to the equations of motion

- For particle 1, the solution is straightforward yi(t) = y1(0)e 5

» Particle 2 has a natural oscillation at frequency wg, but is also subject to
a driving force at frequency wg + w,. Thus, we write a solution to the

equation of motion | |
yz(t) — Ble—lwﬁt + Bze—L(wﬁ+ws)t

* The constants B; and B, can be determined from the initial condition
B; + B, = y,(0), and by substituting the solution into the equation of

motion. Assuming that w; < wp A, (0) Ay, (0)
LAY, LAY,

, B, = 0) —
2wpws 1~ 2(0) 2wpws

Zz

We find from the solution to the equations of motion:

Ga) =™ (i D)Ga),.,

Tg = 2n/wg is the synchrotron period, and the constant a is given by



Solution to the equations of motion

A iwﬁTs
(e 2 -1

= 2wgws

After half a synchrotron period, the roles of the particles are reversed, so that particle 2 sees
no wake field, but particle 1 experiences the wake field from particle 2

By symmetry, we can write down, for the transverse co-ordinates of the particles
after a full synchrotron period:
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Solution to the equations of motion

Thisis (1—-a*-AD)A - +a*=0
Since the matrix has a unit determinant, the diagonalized matrix
will also, so we have 2,4, =1, A, = exp(+i¢p)
and

(1 —a* —exp(i$))(1 — exp(i)) + a* =0
—exp(i¢) — (1 — a®)(exp(i¢)) + exp(i2¢) = 0

(1 —a?) =exp(—ip) — 1+ exp(ip) = 2cos¢p — 1

a’ =2 — 2cos¢ =>a=25in§ , a <2

The normal mode eigenvectors in the (y,,y,), basis are

a _ ( —exp(—i%)) z’ _ (exp(i %))
1 1



Transverse motion with wake fields: stability
condition

“Transfer matrix” R for the motion of the two macroparticles over a full

synchrotron period is ,

_ _—iwgTs (1 —a“ ia
R=e ™ ( ia 1)
The motion of the particles will be stable if the trace of the transfer
matrix has magnitude less than 2, |2 —a?| <2

(e-2 -1) and assuming the maximum magnitude for

USIﬂg a= 2050,

a =|Al/wgws, the stability condition becomes

c?e?NyW, 16m2vgvsE,

<2, N, <
2wpwsCoEy 0 e2W,C,

vp and vg are the betatron and synchrotron tunes.



Transverse motion with wake fields: stability
condition

* It expresses a limit on the bunch population in a storage ring, above which
the betatron oscillation amplitudes of particles in the bunch will increase
exponentially, driven by the transverse wake fields. It is known as the “fast
head-tail instability.

« The presence of transverse wake fields will also lead to a shift in the frequency
of betatron oscillations performed by the particles.

« We can find the frequency shift from the solution to the equations of motion.
The frequencies of the normal modes are given by the eigenvalues of the full
4x4 transfer matrix, describing the changes in co-ordinates and the transverse
momenta of the particles over one synchrotron period.



Transverse motion with wake fields: stability
condition

« If the wake fields are weak, then the normal mode frequencies
are purely real: the particles perform betatron oscillations with
constant amplitude.

* If the wake fields are increased (e.g. by increasing the bunch
charge) the betatron frequencies acquire non-zero imaginary
parts.

* At this point the oscillation amplitude of one mode will be
damped, but the amplitude of the other mode will
grow(exponentially)..



Transverse motion with wake fields: stability
condition

0.5

Of—=— - -

() — wp)/w,

0.5¢

Real and imaginary parts (solid and dashed lines, respectively)
of normal mode frequency shifts (in units of the synchrotron
frequency), as a function of wake field strength.



Transverse mode-coupling instability

« Wake fields shift the mode oscillation frequencies: if the wakefields are
strong enough, the frequencies of two different mode scan become
equal. When this happens, the frequencies acquire non-zero imaginary
parts, indicating the exponential growth of the perturbation, i.e. the
onset of an instability, known as the “transverse mode-coupling
instability” (or strong head-tail instability)
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Strong Head-tail instability : summary

« A simple model of a transverse single-bunch instability can be developed

using a model of the bunch as two macroparticles.

« With some assumptions, and ignoring chromaticity, it is found
Is a threshold (in terms of the bunch charge, or the wake fielc

that there
strength)

above which the betatron oscillations of the particles grow ex

ponentially.

The instability in this case is known as the fast head-tail instability.

« A more sophisticated model of transverse single-bunch instabllities,
including the transverse mode-coupling instability can be developed
using the Vlasov equation to describe the evolution of a charge

distribution in transverse and longitudinal directions.



Effect of chromaticity

We have also ignored some important effects, including (for example)
chromaticity. If chromaticity is taken into account, then the behaviour of
the system is modified: the instability in this case is known as the "head-
tail instability” (rather than the “fast head-tail instability”).



Head Tail Instability



Head-Tail Instability

» Betatron and synchrotron motions are decoupled in strong head-tail
instability. Betatron frequenc%/ depends on energy error 6=AE/E of the
particle. Betatron frequency for off-momentum particle is

wﬁ(c?) — a)'g(l + 55)
(wg: betatron frequency for on-momentum, ¢ : chromaticity)

Accumulated betatron phase is

Pp(s) = f‘“ﬁ(‘s)% :fwﬁ(1_+€5)% =w5(§+€f5%)

S , /
=wg|=- ——|[2z'ds (z'= —no)
€ o n: slippage factor
(s ¢ (n =1/y*-a, n=At/t/dp/p)
=wp|= ——2z(s)
c

In the absence of wake field, deviation of betatron phase is determined by longitudinal
position z, not 4.



Head-Tail Instability

We consider two macroparticles whose synchrotron oscillations

N - a)S

Z1 = ZSsin (—s), Zy = —Z1
C

T S 2T

. . . S T
Particle 1 leads particle 2 during 0 <-<—. and trails it during S¢S W5
C W

Free betatron oscillations of two particles are

j —i E_% . E_% s o (Ws

y1(s) = }’71’3_l¢ﬁ1(5) = y7e iwpz cn §z1] _ Vre iflwps o ¢z Sln( - s)]
. s wpg , s W, . (Wg

y2(s) = %e_i('bﬁZ(s) — y‘z“e_l[wﬁE_WScZZ] _ %e—l[w35+ﬁfz Sln(Ts)]

Leading particle lags in betatron phase relative to trailing particle if %> 0 The situation reverses if %< 0

App = Pp1 — Pp2 = (a)ﬁg — C;)—SEZA sin (%S)) — (a)[;§+ C;)—sfz“ sin (%s)) = -2?—:62 sin (%S)

$wp | is head-talil phase. It is physical origin of head-tail instability.




Head-Tail Instability

The motion of particle 2 during 0 < % < wi in the presence of wake field.

(—Ww, if 0>z > —(bunch length)
.0 otherwise

Wi(z) =

c = V1

wg(62) ’ _ NrgWj
Y2 2yC

Eg. of motion /) +[

wp(82) = wp(1+862) = wp [1 + ¢ (— %)] = wpg (1 + $20, COS w55>



Head-Tail Instability

, dfd d(d]._ s Swpg . | wss
yz_ds dsy2 ds |ds Y2 &P lwﬁ cn C

_d (dy; s Swg . . wgS
“dslds P lwﬂ cn C
wg E% WS s Swpg . | wss fwp
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B o B 4

y, i1s slowly varying = ;" term is ignored.



Head-Tail Instability

., Z'wﬁ dy, s Swg,  wsS wﬁ s Swp, | wsS
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Head-Tail Instability

fa)ﬁé

cn

Head-tail phase « 1. Doing Taylor expansion

INT W, C S 21w WS
9,(5) = 9200+ 25, | (1+ ] ﬁzsmi)ds
0

4yCwg cn C
~ INToWye ,2€a)ﬁ X WsS
= ¥,(0) + 4y Carg 9.(0) ls + i - Z(l — cos— )

1 1

(D Resonant response term @ Chromatic term

@ is responsible for the strong head-tail instability
@ is small because it is proportional to the head-tail phase

Chromatic term is 90° out of phase from the resonant term.



Head-Tail Instability

INToWyc 2¢wpZ
y =y 0 + _— _|_ . 2
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¢ — 0 : strong head — tail instavility
¢ # 0 : head — tail instability



for w_s <s< —S,
[371] _ [1
Yol _2me 0

B’:’j _emc [(1)

=[1

Head-Tail Instability

V1—=Y2 Y21

iY] [531]
11 1Y Z_Z

illYl[]

— Y2 iY”)‘/&]
iY 11 1Yl

Eigenvalue of this transformation matrix

1-Y2-D1-D+Y2=0

Y‘Z
A4 — 22 1+—]+1=0

A2 —2AcosY+1=0
A — (eiY + e‘iy)/l +eY.e W =0
A zeiiY
+

+ mode : two macroparticles oscillate in phase
— mode : two macroparticles oscillate out of phase



Head-Tail Instability

 Imaginary part of Y gives a growth of betatron oscillation.

= +iY _ $N7"OWOCfZA
- T, 2myCn

+ mode is damped if % > 0 and antidamped if %< 0.

- mode is damped if % < 0 and antidamped if §> 0.

« The only value of ¢ that assures a stable beam is £=0.
However, using the Vlasov equation, two particle model has overestimated
growth rate of — mode.

« With presence of some stabilizing mechanisms (such as Landau damping,
radiation damping), it leads us to choose slightly positive values for & for
operation.
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