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Dispersion function, 𝜂𝜂𝑥𝑥

𝑥𝑥(𝑠𝑠) = 𝜂𝜂𝑥𝑥(𝑠𝑠)
Δ𝑝𝑝
𝑝𝑝0

Thus the dispersion function is the momentum-dependent transverse orbit displacement.

𝑩𝑩

reference (= design or nominal or ideal) 
orbit

𝑝𝑝0

𝑝𝑝0 + ∆𝑝𝑝𝑥𝑥

Dispersion function relates the transverse orbit offset between the design (on-energy) 
particle and an off-energy particle divided by the relative difference in momentum 
between the two:

In Lecture 5, we have introduced the dispersion function. Before we discuss longitudinal 
dynamics in circular accelerators, let us introduce two more useful parameters that are 
related with the momentum of a particle; the momentum compaction factor and the 
phase slip (or frequency slippage) factor.
Recall
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𝑝𝑝0 + Δ𝑝𝑝

𝑑𝑑𝜃𝜃

𝜌𝜌
𝑠𝑠

𝑝𝑝0

𝑑𝑑𝑑𝑑

𝑑𝑑𝑠𝑠0 𝑥𝑥

𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑠𝑠0
𝑑𝑑𝑠𝑠0

≡
𝑑𝑑𝑑𝑑
𝑑𝑑𝑠𝑠0

=
𝑥𝑥
𝜌𝜌

Summation around the ring

�
0

Δ𝐶𝐶
𝑑𝑑𝑑𝑑 = Δ𝐶𝐶 ≡ 2𝜋𝜋𝜋𝜋𝜋

Δ𝑅𝑅 =
1

2𝜋𝜋�𝑑𝑑𝑑𝑑 =
1

2𝜋𝜋�𝑀𝑀

𝑥𝑥
𝜌𝜌 𝑑𝑑𝑠𝑠0 ≡ ⟨𝑥𝑥⟩𝑀𝑀

where the subscript 𝑀𝑀 denotes the integration has 
to be evaluated in the magnets where 1/𝜌𝜌 is not 
equal to zero. The momentum compaction factor 𝛼𝛼𝑐𝑐
is defined as, with 𝐶𝐶0 = 2𝜋𝜋𝑅𝑅0

Δ𝐶𝐶
𝐶𝐶0

= 𝛼𝛼𝑐𝑐
Δ𝑝𝑝
𝑝𝑝0

, 𝛼𝛼𝑐𝑐=
𝑝𝑝0
𝑅𝑅0

Δ𝑅𝑅
Δ𝑝𝑝 =

𝑝𝑝0
𝑅𝑅0

⟨𝑥𝑥⟩𝑀𝑀
Δ𝑝𝑝 =

⟨𝜂𝜂𝑥𝑥⟩𝑀𝑀
𝑅𝑅0

=
1

2𝜋𝜋𝑅𝑅0
�
𝑀𝑀

𝜂𝜂𝑥𝑥(𝑠𝑠)
𝜌𝜌 𝑑𝑑𝑑𝑑

Momentum compaction factor 𝛼𝛼𝑐𝑐

𝑅𝑅: effective radius 
of a ring

Consider the paths of two particles with different momenta, 𝑝𝑝0 and 𝑝𝑝0 + Δ𝑝𝑝 (Figure). 

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑠𝑠0

The momentum compaction factor is the momentum-dependent path length difference.

From the geometry we get the path elements

𝑑𝑑𝑠𝑠0 = 𝜌𝜌𝜌𝜌𝜌𝜌, 𝑑𝑑𝑑𝑑 ≈ (𝜌𝜌 + 𝑥𝑥)𝑑𝑑𝑑𝑑

where

So the path difference is due to the finite dispersion function.

(1)

e.g. PLS-2, 𝛼𝛼𝑐𝑐 =0.0013
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It is useful to introduce the phase slip factor, which is the momentum-dependent (relative) 
time-of-flight difference:

(2)

Phase slip factor 𝜂𝜂𝑝𝑝

𝜂𝜂𝑝𝑝 =
⁄Δ𝑇𝑇 𝑇𝑇0
⁄Δ𝑝𝑝 𝑝𝑝0

𝑇𝑇 =
𝐶𝐶
𝑣𝑣

=
𝐶𝐶0 + Δ𝐶𝐶
𝑣𝑣0 + Δ𝑣𝑣

≈ 𝐶𝐶0 + Δ𝐶𝐶
𝑣𝑣0 − Δ𝑣𝑣
𝑣𝑣02

≈
1
𝑣𝑣02

𝐶𝐶0𝑣𝑣0 + 𝑣𝑣0Δ𝐶𝐶 − 𝐶𝐶0Δ𝑣𝑣 = 𝑇𝑇0 +
𝑣𝑣0Δ𝐶𝐶 − 𝐶𝐶0Δ𝑣𝑣

𝑣𝑣02

Δ𝑇𝑇 = 𝑇𝑇 − 𝑇𝑇0 =
𝑣𝑣0Δ𝐶𝐶 − 𝐶𝐶0Δ𝑣𝑣

𝑣𝑣02
The difference in time-of-flight is

Time-of-flight of a particle with speed 𝑣𝑣 to first order in small quantities is

or

𝜂𝜂𝑝𝑝 =
⁄Δ𝑇𝑇 𝑇𝑇0
⁄Δ𝑝𝑝 𝑝𝑝0

= 𝛼𝛼𝑐𝑐 −
1
𝛾𝛾02

𝜂𝜂𝑝𝑝 is called the phase slip factor (or frequency slippage factor or simply slippage factor), 
which as we shall see soon is an important parameter in longitudinal dynamics in 
synchrotrons. In electron synchrotron, 𝜂𝜂𝑝𝑝 ≈ 𝛼𝛼𝑐𝑐. Note: 𝜂𝜂𝑝𝑝 is not the dispersion function 𝜂𝜂.

(3)

(4)

𝑇𝑇0 =
𝐶𝐶0
𝑣𝑣0

Δ𝑇𝑇
𝑇𝑇0

=
Δ𝐶𝐶
𝑇𝑇0𝑣𝑣0

−
𝐶𝐶0Δ𝑣𝑣
𝑇𝑇0𝑣𝑣02

=
�
Δ𝐶𝐶
𝐶𝐶0

=𝛼𝛼𝑐𝑐
Δ𝑝𝑝
𝑝𝑝0

−
�
Δ𝑣𝑣
𝑣𝑣0

= 1
𝛾𝛾02
Δ𝑝𝑝
𝑝𝑝0

= (𝛼𝛼𝑐𝑐 −
1
𝛾𝛾02

)
Δ𝑝𝑝
𝑝𝑝0

≡ 𝜂𝜂𝑝𝑝
Δ𝑝𝑝
𝑝𝑝0

Therefore
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Synchrotron motion
Now we are ready to derive longitudinal equations of motion in synchrotron or storage 
ring.  Let’s consider a single particle moving through a synchrotron or storage ring. From 
the definition of our longitudinal canonical variable, 𝑧𝑧 = 𝑠𝑠

𝛽𝛽0
− 𝑐𝑐𝑐𝑐, the change in 𝑧𝑧 for a 

particle travelling with speed 𝛽𝛽𝑐𝑐 over one turn 𝐶𝐶0 of the ring is 

∆𝑧𝑧 =
𝑠𝑠 + 𝐶𝐶0
𝛽𝛽0

− 𝑐𝑐 𝑡𝑡 + 𝑇𝑇 −
𝑠𝑠
𝛽𝛽0

+ 𝑐𝑐𝑐𝑐 =
𝐶𝐶0
𝛽𝛽0
−
𝐶𝐶
𝛽𝛽

, (𝐶𝐶 = 𝛽𝛽𝑐𝑐𝑇𝑇) (5)

Assuming that we can average the change in 𝑧𝑧 over the entire circumference, we have

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 ≈

∆𝑧𝑧
𝐶𝐶0

=
1
𝛽𝛽0
−

𝐶𝐶
𝐶𝐶0𝛽𝛽

=
1
𝛽𝛽0
−

𝛽𝛽𝑐𝑐𝑐𝑐
𝑐𝑐𝛽𝛽0𝑇𝑇0𝛽𝛽

=
1
𝛽𝛽0

1 −
𝑇𝑇
𝑇𝑇0

= −
𝜂𝜂𝑝𝑝
𝛽𝛽0
𝛿𝛿 (6)

Using 𝛿𝛿 ≈ 𝑝𝑝𝑡𝑡/𝛽𝛽0, this can be expressed in terms of the canonical variable, 𝑝𝑝𝑡𝑡:
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −

𝜂𝜂𝑝𝑝
𝛽𝛽02

𝑝𝑝𝑡𝑡 (7)

This is one of the equations describing the longitudinal motion in a synchrotron or storage 
ring. To get the other (i.e. energy deviation) equation we consider the energy gained from 
the RF cavities and the energy lost by synchrotron radiation:

∆𝑝𝑝𝑡𝑡 =
𝐸𝐸 − 𝐸𝐸0
𝑝𝑝0𝑐𝑐

=
𝑞𝑞𝑉𝑉𝑅𝑅𝑅𝑅
𝑝𝑝0𝑐𝑐

sin 𝜙𝜙𝑅𝑅𝑅𝑅 −
𝜔𝜔𝑅𝑅𝑅𝑅
𝑐𝑐 𝑧𝑧 −

𝑈𝑈0
𝑝𝑝0𝑐𝑐 (8)

𝑈𝑈0: energy lost per turn by synchrotron radiation 𝜙𝜙𝑅𝑅𝑅𝑅 : fixed RF phase
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Assuming again that we can take an average of ∆𝑝𝑝𝑡𝑡 over the circumference, we have
𝑑𝑑𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑

≈
∆𝑝𝑝𝑡𝑡
𝐶𝐶0

=
𝑞𝑞𝑉𝑉𝑅𝑅𝑅𝑅
𝐶𝐶0𝑝𝑝0𝑐𝑐

sin 𝜙𝜙𝑅𝑅𝑅𝑅 −
𝜔𝜔𝑅𝑅𝑅𝑅
𝑐𝑐

𝑧𝑧 −
𝑈𝑈0

𝐶𝐶0𝑝𝑝0𝑐𝑐
(9)

Taking the derivative of Eq. (7) with respect to 𝑠𝑠 and substituting for 𝑑𝑑𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑

from Eq. (9) we get
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑠𝑠2 = −

𝑞𝑞𝑉𝑉𝑅𝑅𝑅𝑅
𝐶𝐶0𝑝𝑝0𝑐𝑐

𝜂𝜂𝑝𝑝
𝛽𝛽02

sin 𝜙𝜙𝑅𝑅𝑅𝑅 −
𝜔𝜔𝑅𝑅𝑅𝑅
𝑐𝑐

𝑧𝑧 +
𝜂𝜂𝑝𝑝
𝛽𝛽02

𝑈𝑈0
𝐶𝐶0𝑝𝑝0𝑐𝑐

(10)

If we set the RF phase such that 𝜙𝜙𝑅𝑅𝑅𝑅 = 𝜙𝜙𝑠𝑠, which is called the synchronous phase:

sin 𝜙𝜙𝑠𝑠 =
𝑈𝑈0
𝑞𝑞𝑉𝑉𝑅𝑅𝑅𝑅 (11)

Eq. (13) is a nonlinear equation in 𝑧𝑧 so we linearize it to examine linear dynamics:

sin 𝜙𝜙𝑠𝑠 −
𝜔𝜔𝑅𝑅𝑅𝑅
𝑐𝑐 𝑧𝑧 ≈ sin 𝜙𝜙𝑠𝑠 −

𝜔𝜔𝑅𝑅𝑅𝑅
𝑐𝑐 𝑧𝑧 cos 𝜙𝜙𝑠𝑠

Substituting this into Eq. (12), the linearized energy equation is

(13)

(14)

𝑑𝑑𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑 = −

𝑞𝑞𝑉𝑉𝑅𝑅𝑅𝑅
𝐶𝐶0𝑝𝑝0𝑐𝑐

𝜔𝜔𝑅𝑅𝑅𝑅
𝑐𝑐 𝑧𝑧 cos 𝜙𝜙𝑠𝑠

𝑑𝑑2𝑧𝑧
𝑑𝑑𝑠𝑠2 = −

𝑞𝑞𝑉𝑉𝑅𝑅𝑅𝑅
𝐶𝐶0𝑝𝑝0𝑐𝑐

𝜂𝜂𝑝𝑝
𝛽𝛽02

sin 𝜙𝜙𝑠𝑠 −
𝜔𝜔𝑅𝑅𝑅𝑅
𝑐𝑐 𝑧𝑧 +

𝜂𝜂𝑝𝑝
𝛽𝛽02

𝑞𝑞𝑉𝑉𝑅𝑅𝑅𝑅
𝐶𝐶0𝑝𝑝0𝑐𝑐

sin 𝜙𝜙𝑠𝑠

Eqs. (9) and (10) then respectively become

(12)
𝑑𝑑𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑 = −

𝑞𝑞𝑉𝑉𝑅𝑅𝑅𝑅
𝐶𝐶0𝑝𝑝0𝑐𝑐

sin 𝜙𝜙𝑠𝑠 − sin 𝜙𝜙𝑠𝑠 −
𝜔𝜔𝑅𝑅𝑅𝑅
𝑐𝑐 𝑧𝑧

(15)
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𝑑𝑑2𝑧𝑧
𝑑𝑑𝑠𝑠2

+ 𝑘𝑘𝑠𝑠2 𝑧𝑧 = 0 (16)

𝑘𝑘𝑠𝑠2 = −
𝑞𝑞𝑉𝑉𝑅𝑅𝑅𝑅
𝑝𝑝0𝑐𝑐

𝜔𝜔𝑅𝑅𝑅𝑅
𝑐𝑐𝐶𝐶0

𝜂𝜂𝑝𝑝
𝛽𝛽02

cos 𝜙𝜙𝑠𝑠

where

(17)

And Eq. (13) when linearized becomes 

We see that if 𝑘𝑘𝑠𝑠2 > 0 or
𝑞𝑞𝑉𝑉𝑅𝑅𝑅𝑅𝜂𝜂𝑝𝑝cos 𝜙𝜙𝑠𝑠 < 0 (18)

then the motion is stable; oscillation with the angular frequency 𝜔𝜔𝑠𝑠 ≈ 𝑐𝑐𝛽𝛽0𝑘𝑘𝑠𝑠 about the 
reference particle. The longitudinal oscillation is also called the synchrotron oscillation. The 
reference particle always sees a fixed RF phase 𝜙𝜙𝑠𝑠.
The synchrotron frequency is the longitudinal oscillation frequency which is defined as 

𝑓𝑓𝑠𝑠 =
𝜔𝜔𝑠𝑠
2𝜋𝜋 =

𝑐𝑐𝛽𝛽0𝑘𝑘𝑠𝑠
2𝜋𝜋 =

1
2𝜋𝜋

−
𝑞𝑞𝑉𝑉𝑅𝑅𝑅𝑅
𝑝𝑝0

𝜔𝜔𝑅𝑅𝑅𝑅𝜂𝜂𝑝𝑝
𝐶𝐶0

cos 𝜙𝜙𝑠𝑠 (19)

7

The synchrotron tune is defined as the number of synchrotron oscillations per one 
revolution of the synchronous particle:

𝜈𝜈𝑠𝑠 =
𝜔𝜔𝑠𝑠
𝜔𝜔0

=
𝑐𝑐𝛽𝛽0𝑘𝑘𝑠𝑠
2𝜋𝜋/𝑇𝑇0

=
𝐶𝐶0𝑘𝑘𝑠𝑠
2𝜋𝜋 =

1
2𝜋𝜋 −

𝑞𝑞𝑉𝑉𝑅𝑅𝑅𝑅
𝑐𝑐𝑝𝑝0

𝜔𝜔𝑅𝑅𝑅𝑅𝐶𝐶0
𝑐𝑐

𝜂𝜂𝑝𝑝
𝛽𝛽02

cos 𝜙𝜙𝑠𝑠 (20)
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𝜔𝜔𝑅𝑅𝑅𝑅 = ℎ𝜔𝜔0

Here 𝜔𝜔0 is the angular revolution frequency of a reference particle. The RF angular 
frequency 𝜔𝜔𝑅𝑅𝑅𝑅 must satisfy

(21)

where ℎ = 𝜔𝜔𝑅𝑅𝑅𝑅
𝜔𝜔0

is called the harmonic number (e.g. PLS-2, ℎ =470), which must be a 

positive integer for reference particle always to receive the same energy when it passes 
through the RF cavity. 

𝜈𝜈𝑠𝑠 = −
𝑞𝑞𝑉𝑉𝑅𝑅𝑅𝑅ℎ𝜂𝜂𝑝𝑝
2𝜋𝜋𝛽𝛽02𝐸𝐸0

cos𝜙𝜙𝑠𝑠

Using Eq. (21), Eq. (20) can also be expressed by

(22)

𝜂𝜂𝑝𝑝 = 𝛼𝛼𝑐𝑐 −
1
𝛾𝛾2 ≡

1
𝛾𝛾𝑡𝑡2

−
1
𝛾𝛾2 ,

Transition gamma

Let’s introduce the transition gamma, 𝛾𝛾𝑡𝑡

The synchrotron tune is usually small, i.e. 𝜈𝜈𝑠𝑠≪ 1, (e.g. PLS−2, 𝜈𝜈𝑠𝑠 = 0.00850 @𝑉𝑉𝑅𝑅𝑅𝑅=3.2
MV), compared to the betatron tune such that the synchrotron oscillation is a slow process 
compared with the betatron oscillation , (e.g. PLS−2, 𝜈𝜈𝑥𝑥 = 15.28, 𝜈𝜈𝑦𝑦 = 8.18).

𝛾𝛾𝑡𝑡=
1
𝛼𝛼𝑐𝑐

(23)

(24)

(e.g. PLS−2, 𝛾𝛾𝑡𝑡 = 29.023),
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From Eq. (18), we see that the condition for stable oscillation is assuming 𝑞𝑞𝑉𝑉𝑅𝑅𝑅𝑅 > 0

𝜂𝜂𝑝𝑝 cos𝜙𝜙𝑠𝑠 = (𝛼𝛼𝑐𝑐 −
1
𝛾𝛾2) cos𝜙𝜙𝑠𝑠 ≈𝛼𝛼𝑐𝑐 cos𝜙𝜙𝑠𝑠 < 0

𝜋𝜋
2

< 𝜙𝜙𝑠𝑠 < 𝜋𝜋 if 𝛼𝛼𝑐𝑐 >
1
𝛾𝛾2 Principle of phase stability

V. I. Veksler 1944
E. M. McMillan 19450 < 𝜙𝜙𝑠𝑠 <

𝜋𝜋
2

if 𝛼𝛼𝑐𝑐 <
1
𝛾𝛾2

or  𝜂𝜂𝑝𝑝 > 0 or  𝛾𝛾 > 𝛾𝛾𝑡𝑡

or 𝜂𝜂𝑝𝑝 < 0 or 𝛾𝛾 < 𝛾𝛾𝑡𝑡

Then from the condition for positive energy gain we find

Thus it is important where the synchronous phase lies depending on the sign of 𝜂𝜂𝑝𝑝.

We can understand this qualitatively by looking at the figure in the next slide.
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Principle of phase stability above transition

𝜂𝜂𝑝𝑝 = 𝛼𝛼𝑐𝑐 −
1
𝛾𝛾2

≡
1
𝛾𝛾𝑡𝑡2

−
1
𝛾𝛾2

> 0

Δ𝑇𝑇
𝑇𝑇0

= (𝛼𝛼𝑐𝑐 −
1
𝛾𝛾2

)
Δ𝑝𝑝
𝑝𝑝0

≡ 𝜂𝜂𝑝𝑝
Δ𝑝𝑝
𝑝𝑝0

Above transition energy 𝛾𝛾 > 𝛾𝛾𝑡𝑡, a particle with higher energy than the synchronous 
energy takes longer time to complete one revolution, i.e.  Δ𝑇𝑇 > 0. A particle which 
arrives the RF cavity earlier than the synchronous particle receives higher energy and 
therefore it will take longer time to complete one revolution around the ring; as a 
result it comes closer to the synchronous particle. A particle which arrives later than 
the synchronous particle, it will take shorter time and also it comes closer to the 
synchronous particle in the next turn.

= 𝑉𝑉𝑅𝑅𝑅𝑅

𝜋𝜋0 𝜋𝜋
2

3𝜋𝜋
2

2𝜋𝜋
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Hamiltonian for longitudinal motion
Eqs. (7) and (12) are the Hamilton’s equations which can be derived from the Hamiltonian:

𝐻𝐻 =
𝑞𝑞𝑉𝑉𝑅𝑅𝑅𝑅

𝜔𝜔𝑅𝑅𝑅𝑅𝐶𝐶0𝑝𝑝0
𝜔𝜔𝑅𝑅𝑅𝑅
𝑐𝑐

𝑧𝑧 sin 𝜙𝜙𝑠𝑠 − cos 𝜙𝜙𝑠𝑠 −
𝜔𝜔𝑅𝑅𝑅𝑅
𝑐𝑐

𝑧𝑧 −
1
2
𝜂𝜂𝑝𝑝
𝛽𝛽02

𝑝𝑝𝑡𝑡2 (25)

where Eq. (11) was used to eliminate 𝑈𝑈0. Particles performing synchrotron oscillations 
will follow  contours of constant value of the Hamiltonian in longitudinal phase space.

𝑝𝑝𝑡𝑡 =
∆𝐸𝐸
𝑐𝑐𝑝𝑝0

𝑧𝑧 =
𝐶𝐶0
𝛽𝛽0
−
𝐶𝐶
𝛽𝛽

Note that there are bounded regions where the contours form closed loops: particles in 
these regions perform stable oscillations. The curve forming the boundary of stable region 
is called the separatrix.
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We have two first-order longitudinal equations of motion, Eqs. (7) and (12). Let’s rewrite 
them introducing Δ𝜙𝜙, a change in RF phase:

Multiplying by 𝑑𝑑Δ𝜙𝜙/𝑑𝑑𝑑𝑑 on both sides of Eq. (28), we get 

Δ𝜙̈𝜙Δ𝜙̇𝜙 +
𝜔𝜔𝑠𝑠2

cos𝜙𝜙𝑠𝑠
Δ𝜙̇𝜙(sin𝜙𝜙 − sin𝜙𝜙𝑠𝑠) = 0

(27)

Equation (28) is a nonlinear pendulum equation. Although it is nonlinear, we can find in 
this case exact solutions given by Jacobi elliptic functions. But it is not illuminating. So we 
will not consider exact solutions here. Instead we discuss it based on integrals of motion.

Δ𝜙𝜙 = −
𝜔𝜔𝑅𝑅𝑅𝑅
𝑐𝑐

𝑧𝑧𝜙𝜙 = 𝜙𝜙𝑠𝑠 −
𝜔𝜔𝑅𝑅𝑅𝑅
𝑐𝑐

𝑧𝑧 = 𝜙𝜙𝑠𝑠 + Δ𝜙𝜙

(26)

𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑠𝑠

=
𝜔𝜔𝑅𝑅𝑅𝑅
𝑐𝑐

𝜂𝜂𝑝𝑝
𝛽𝛽02

𝑝𝑝𝑡𝑡

𝑑𝑑𝑝𝑝𝑡𝑡
𝑑𝑑𝑠𝑠 =

𝑞𝑞𝑉𝑉𝑅𝑅𝑅𝑅
𝑐𝑐𝐶𝐶0𝑝𝑝0

sin 𝜙𝜙 − sin𝜙𝜙𝑠𝑠 =
𝑞𝑞𝑉𝑉𝑅𝑅𝑅𝑅
𝑐𝑐𝐶𝐶0𝑝𝑝0

sin 𝜙𝜙𝑠𝑠 + Δ𝜙𝜙 − sin𝜙𝜙𝑠𝑠

𝑑𝑑2Δ𝜙𝜙
𝑑𝑑𝑡𝑡2 +

𝜔𝜔𝑠𝑠2

cos𝜙𝜙𝑠𝑠
(sin𝜙𝜙 − sin𝜙𝜙𝑠𝑠) = 0

𝑑𝑑
𝑑𝑑𝑑𝑑
Δ𝜙̇𝜙2

2 +
𝜔𝜔𝑠𝑠2

cos𝜙𝜙𝑠𝑠
Δ𝜙̇𝜙(sin𝜙𝜙 − sin𝜙𝜙𝑠𝑠) = 0

(28)

where we have changed the independent variable from 𝑠𝑠 to time 𝑡𝑡, 𝑠𝑠 = 𝑐𝑐𝛽𝛽0𝑡𝑡 and used 
Eq. (19). 

or

(29)

12

𝑑𝑑
𝑑𝑑𝑑𝑑
Δ𝜙̇𝜙2

2 −
𝜔𝜔𝑠𝑠2

cos𝜙𝜙𝑠𝑠
𝑑𝑑
𝑑𝑑𝑑𝑑 (cos𝜙𝜙 + Δ𝜙𝜙 sin𝜙𝜙𝑠𝑠) = 0

Combining these two, we get a second-order diff. equation as before, which can be 
written in the form 

and
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Integration yields

1st integral

where we have changed from Δ𝜙𝜙 to 𝜙𝜙 ∵ Δ𝜙̇𝜙 = 𝜙̇𝜙

(30)
Δ𝜙̇𝜙2

2
−

𝜔𝜔𝑠𝑠2

cos𝜙𝜙𝑠𝑠
(cos𝜙𝜙 + 𝜙𝜙 sin𝜙𝜙𝑠𝑠) = const.

13

If the motion 𝜙𝜙(𝑡𝑡) is oscillatory and stable, there are two turning points of the motion 
in the phase space, 𝜙𝜙1 and 𝜙𝜙2, located on either side of 𝜙𝜙𝑠𝑠 for which the derivatives 
𝑑𝑑𝜙𝜙1
𝑑𝑑𝑑𝑑

= 0 and 𝑑𝑑𝜙𝜙2
𝑑𝑑𝑑𝑑

= 0. To find these turning points, let’s consider Eq. (30)

Δ𝜙̇𝜙2

2
−

𝜔𝜔𝑠𝑠2

cos𝜙𝜙𝑠𝑠
(cos𝜙𝜙 + 𝜙𝜙 sin𝜙𝜙𝑠𝑠) → −

𝜔𝜔𝑠𝑠2

cos𝜙𝜙𝑠𝑠
(cos𝜙𝜙1 +𝜙𝜙1 sin𝜙𝜙𝑠𝑠)

= −
𝜔𝜔𝑠𝑠2

cos𝜙𝜙𝑠𝑠
(cos𝜙𝜙2 +𝜙𝜙2 sin𝜙𝜙𝑠𝑠)

(31)

One of the phase extrema is at 𝜙𝜙1 = 𝜋𝜋 − 𝜙𝜙𝑠𝑠 because at 𝜙𝜙1 = 𝜋𝜋 − 𝜙𝜙𝑠𝑠
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑑𝑑2

= 0 [from Eq. (28)] so 𝑑𝑑𝜙𝜙/𝑑𝑑𝑑𝑑 changes sign. This is called the “unstable fixed point”.  

Also 𝑑𝑑
2𝜙𝜙
𝑑𝑑𝑑𝑑2

= 0 when 𝜙𝜙 = 𝜙𝜙𝑠𝑠 . This is called the “stable fixed point”.

Δ𝜙̇𝜙2

2 −
𝜔𝜔𝑠𝑠2

cos𝜙𝜙𝑠𝑠
(cos𝜙𝜙 + 𝜙𝜙 sin𝜙𝜙𝑠𝑠) = −

𝜔𝜔𝑠𝑠2

cos𝜙𝜙𝑠𝑠
[cos(𝜋𝜋 − 𝜙𝜙𝑠𝑠) + (𝜋𝜋 − 𝜙𝜙𝑠𝑠) sin𝜙𝜙𝑠𝑠)

This is the equation of separatrix

(32)

Kinetic 
energy

Potential  energy
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The other phase extremum can be found from Eq. (31) by solving

(cos𝜙𝜙2 + 𝜙𝜙2 sin𝜙𝜙𝑠𝑠) = [cos(𝜋𝜋 − 𝜙𝜙𝑠𝑠) + (𝜋𝜋 − 𝜙𝜙𝑠𝑠) sin𝜙𝜙𝑠𝑠) (33)

This can be solved numerically. 

(PLS)
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A region within a separatrix, where the particles perform stable oscillations, is known 
as an RF bucket.

RF bucket height (Energy acceptance )
The time (or 𝑠𝑠) derivative of the RF phase (or the energy change) reaches maximum 
(the second derivative is zero) at the synchronous phase, 𝜙𝜙 = 𝜙𝜙𝑠𝑠. See Eq. (28).

Δ𝜙̇𝜙𝑚𝑚𝑚𝑚𝑚𝑚
2 = 2𝜔𝜔𝑠𝑠2[2 + (2𝜙𝜙𝑠𝑠 − 𝜋𝜋) tan𝜙𝜙𝑠𝑠]

Replacing the time derivative of the phase from the first energy-phase relation, we get 
the RF bucket height which is the maximum energy acceptance of the synchrotron:

Δ𝐸𝐸
𝐸𝐸0 𝑚𝑚𝑚𝑚𝑚𝑚

= ±𝛽𝛽0
𝑞𝑞𝑉𝑉𝑅𝑅𝑅𝑅
𝜋𝜋ℎ𝜂𝜂𝑝𝑝𝐸𝐸0

(𝜋𝜋 − 2𝜙𝜙𝑠𝑠) sin𝜙𝜙𝑠𝑠 −2cos𝜙𝜙𝑠𝑠
1/2

RF bucket height defines the energy acceptance which depends strongly on the choice 
of the synchronous phase. It plays an important role on injection matching and 
influences strongly on the beam life time in electron storage rings. In PLS-2, 
Δ𝐸𝐸
𝐸𝐸0 𝑚𝑚𝑚𝑚𝑚𝑚

~2.44% when 𝑉𝑉𝑅𝑅𝑅𝑅 = 3.2 MV.

The equation of the separatrix at this point becomes [from Eq. (32)]

(34)
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PLS-2, 𝐶𝐶0 = 281.82 𝑚𝑚

𝐸𝐸 = 3.0 𝐺𝐺𝐺𝐺𝐺𝐺,𝑉𝑉𝑅𝑅𝑅𝑅 = 3.2 𝑀𝑀𝑀𝑀, 𝑓𝑓𝑅𝑅𝑅𝑅 = 499.97323 𝑀𝑀𝑀𝑀𝑀𝑀, ℎ = 470,𝑈𝑈0 = 1.04 𝑀𝑀𝑀𝑀𝑀𝑀

𝜙𝜙𝑠𝑠 = 160.994°, 𝑓𝑓𝑠𝑠 = 10.589 𝑘𝑘𝑘𝑘𝑘𝑘, 𝜈𝜈𝑠𝑠 = 0.009954,𝛼𝛼𝑐𝑐 = 0.001299,𝜎𝜎𝑙𝑙 = 6.336 𝑚𝑚𝑚𝑚
𝑒𝑒𝑉𝑉𝑅𝑅𝑅𝑅
𝑈𝑈0

= 3.071 Over-voltage factor
Δ𝐸𝐸
𝐸𝐸0 𝑚𝑚𝑚𝑚𝑚𝑚

~2.44%

16
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