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6. Longitudinal Dynamics
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In Lecture 5, we have introduced the dispersion function. Before we discuss longitudina s>
dynamics in circular accelerators, let us introduce two more useful parameters that are
related with the momentum of a particle; the momentum compaction factor and the

phase slip (or frequency slippage) factor.

>

ToNHa:

Recall
Dispersion function, 7,

Dispersion function relates the transverse orbit offset between the design (on-energy)
particle and an off-energy particle divided by the relative difference in momentum

between the two:
Po

Ap
x(s) = nx(s) Do ’ o + Ap

B(©®

reference (= design or nominal or ideal)
orbit

Thus the dispersion function is the momentum-dependent transverse orbit displacement.
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Momentum compaction factor a, Y
The momentum compaction factor is the momentum-dependent path length difference.

Consider the paths of two particles with different momenta, p, and py + Ap (Figure).
From the geometry we get the path elements
ds, = pdo, ds = (p + x)d6

ds—dsy, dl x
= = ; where dl = ds —ds,

dSO dSO

Summation around the ring

AC R: effective radius
dl = AC = 2nAR of aring

po + Ap 21

where the subscript M denotes the integration has
to be evaluated in the magnets where 1/p is not
equal to zero. The momentum compaction factor «,
is defined as, with Cy = 2nR,

AC_ Bp  _PoAR_po(u _ (Madw _ 1 j Nx(S) )
Co <y ‘" RoAp R, Ap R, 2Ry Jyy P
So the path difference is due to the finite dispersion function. e.g. PL5-2, a. =0.0013
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Phase slip factor 7,

It is useful to introduce the phase slip factor, which is the momentum-dependent (relatlve)
time-of-flight difference:

AT /T,
Np = (2)
Ap/po c
0
Time-of-flight of a particle with speed v to first order in small quantities is Ty = V_o
C C+AC vo—Av 1 voAC — CyAv
0 ~ (Co + AC) 25— =~ — (Covp + VpAC — CoAv) = To + ————
v Vo + Av 12 (2 1z
o VoAC — CyAv
The difference in time-of-flightis AT =T —T, = 5
Vo
or
AT AC CyAv AC A ( 1 )Ap Ap
= — = —=— = — =, ——)— = n _— 3
To Tovg Tové Co Yo ‘ )/02 Po P po )
—q Ap _1Ap
"o 2P0
Therefore
AT/TO 1 @)
n =0c——3
P Ap/pe ¢ ¥

1y is called the phase slip factor (or frequency slippage factor or simply slippage factor),
which as we shall see soon is an important parameter in longitudinal dynamics in
synchrotrons. In electron synchrotron, n,, = a.. Note: 1, is not the dispersion function 7.
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Synchrotron motion
Now we are ready to derive longitudinal equations of motion in synchrotron or storage
ring. Let’s consider a single particle moving through a synchrotron or storage ring. From

the definition of our longitudinal canonical variable, z = = ct, the change in z for a

Bo
particle travelling with speed [c over one turn C, of the ring is
s+ C S Cb, C
Az = S C(t+T)——4ct=—>——, (C =pcT)  (5)
Bo 0 Bo B

Assuming that we can average the change in z over the entire circumference, we have

dz Az 1 C 1 BcT _1(1 T>_ Np
ds Co Bo GCof PBo cPoToB Bo To Bo

Using § = p;/B,, this can be expressed in terms of the canonical variable, p;:

(6)

ds 2 t (7)

This is one of the equations describing the longitudinal motion in a synchrotron or storage
ring. To get the other (i.e. energy deviation) equation we consider the energy gained from
the RF cavities and the energy lost by synchrotron radiation:

E—Ey qVgrr . WRF Ug
= = e S (P =) @
Uy: energy lost per turn by synchrotron radiation ¢rr : fixed RF phase
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Assuming again that we can take an average of Ap; over the circumference, we have

dp: Ap; _ qVrr sin(qb _%Z) U
ds Co CopocC RE

(9)

C CoPoC
Taking the derivative of Eq. (7) with respect to s and substituting for % from Eq. (9) we get
d*z qVrr Mp WRF M Uo
— = - —sin(¢ppr ——2z ) +— 10
ds? CopocC B§ ( ~r ¢ ) Bs Coboc 1o
If we set the RF phase such that ¢pr = ¢, which is called the synchronous phase:
. Ug
sin ¢, = Ver (11)
Egs. (9) and (10) then respectively become
dp; qVrr T . : WRF
FAie Copoc [sm ¢, — sin (qbs — ?Z)] (12)
d*z qQVrr Mp . WRF Ny qQVrr
FE i Copocﬁ_gsm (qbs I z) + _éCopoc sin ¢ (13)

Eg. (13) is a nonlinear equation in z so we linearize it to examine linear dynamics:

: WRF : WRF
sin (qbs — TZ) ~ sin ¢, — ?Z COS Qs

(14)
Substituting this into Eq. (12), the linearized energy equation is
d Vrr @
2Pe _ _ A7RF Orr Z COS ¢ (15)
ds CopoC C
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And Eq. (13) when linearized becomes S
d’z
d_Sz + kS z=20 (16)

where

qVrr WrE Np
k? = — 17
s poc cCq ,/33 COS ¢ (17)

We see that if k2 > 0 or

qVrrnpCos ¢pg < 0 (18)

then the motion is stable; oscillation with the angular frequency wg = cfyks about the
reference particle. The longitudinal oscillation is also called the synchrotron oscillation. The
reference particle always sees a fixed RF phase ¢;.

The synchrotron frequency is the longitudinal oscillation frequency which is defined as

Ws cPoks 1 _ qVrr WrFMp
2T 2T 2T po Co

f. =

COS Qs (19)

The synchrotron tune is defined as the number of synchrotron oscillations per one
revolution of the synchronous particle:

Wg _ cBoks _ Coks _ 1 _ qVrr WrrCo Mp cos ¢
wo 2n/T, 2m 2m cpy ¢ P2 >

Vg = (20)
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Here w, is the angular revolution frequency of a reference particle. The RF angular
frequency wppr must satisfy

WRr = h(UO (21)

where h = % is called the harmonic number (e.g. PLS-2, h =470), which must be a
0

positive integer for reference particle always to receive the same energy when it passes
through the RF cavity.

Using Eg. (21), Eq. (20) can also be expressed by

(22)

The synchrotron tune is usually small, i.e. v;«< 1, (e.g. PLS-2, v¢ = 0.00850 @Vzr=3.2
MV), compared to the betatron tune such that the synchrotron oscillation is a slow process
compared with the betatron oscillation , (e.g. PLS-2, v, = 15.28, v,, = 8.18).

Let’s introduce the transition gamma, y;

1 1 1
=T R = 2T 2 23
Np ; Y2 = y2 2 (23)
YVt= NG Transition gamma (24)

(e.g. PLS-2, y; = 29.023),
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%
%)
From Eq. (18), we see that the condition for stable oscillation is assuming gVrr > 0 &

Np cosps = (a. — ﬁ) cos¢, = a, cosp, <0

Then from the condition for positive energy gain we find

T _ 1
5 <¢;<m ifa.> 2z ornp >0 ory>y Principle of phase stability
1 V. I. Veksler 1944
T :
0< s < > ifa, < ﬁ or n, <0 ory <y, E. M. McMillan 1945

Thus it is important where the synchronous phase lies depending on the sign of 7,,.

We can understand this qualitatively by looking at the figure in the next slide.
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Principle of phase stability above transition

Above transition energy y > V;, a particle with higher energy than the synchronous
energy takes longer time to complete one revolution, i.e. AT > 0. A particle which
arrives the RF cavity earlier than the synchronous particle receives higher energy and
therefore it will take longer time to complete one revolution around the ring; as a
result it comes closer to the synchronous particle. A particle which arrives later than
the synchronous particle, it will take shorter time and also it comes closer to the
synchronous particle in the next turn.
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Hamiltonian for longitudinal motion ey

1986

Egs. (7) and (12) are the Hamilton’s equations which can be derived from the Hamiltonian:

qQVrr [WRrF . WRF 1n
[ c ZSln(PS—COS((ﬁS—?Z) —Eﬂ—gp? (25)

where Eq. (11) was used to eliminate U,. Particles performing synchrotron oscillations
will follow contours of constant value of the Hamiltonian in longitudinal phase space.

Note that there are bounded regions where the contours form closed loops: particles in

these regions perform stable oscillations. The curve forming the boundary of stable region
is called the separatrix.
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We have two first-order longitudinal equations of motion, Egs. (7) and (12). Let’s rewritg:..".
them introducing A¢, a change in RF phase:

¢:¢s_wZ:¢S+A¢ Ap = —ZBE ,
and C
dp:  qVrr
ds  cCypq (sin ¢ — sin¢ps) = Copo —[sin (¢s + Ap) —sings]  (26)
dA¢ wRF np
ds c ﬁ (27)

Combining these two, we get a second-order diff. equation as before, which can be
written in the form dZAgb wZ

dt? cosqbs
where we have changed the independent variable from s to time t, s = ¢yt and used
Eqg. (19).
Equation (28) is a nonlinear pendulum equation. Although it is nonlinear, we can find in
this case exact solutions given by Jacobi elliptic functions. But it is not illuminating. So we
will not consider exact solutions here. Instead we discuss it based on integrals of motion.
Multiplying by dA¢ /dt on both sides of Eq. (28), we get

(sin¢ — sing) = 0 (28)

.. w? d Ap?  w?
APAg + cosd Ag(sinp — sing) =0 or 7t 2 + cos A (sin ¢ — sing,) = 0
d Ap?> w? d _
it 2 cosp. drf (cos ¢ + A singg) = 0 (29)
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Integration yields
Acsz w?

2 cosgbs

where we have changed from A¢ to ¢ ** Ajp = ¢

If the motion ¢ (t) is oscillatory and stable, there are two turning points of the motion

in the phase space, ¢ and ¢,, located on either side of ¢ for which the derivatives

e 0 and 6%2 = (. To find these turning points, let’s consider Eq. (30)

(cos ¢ + ¢ sing;) = const. 1%t integral (30)

dt
AqSZ w2 w2
> coscps (cos ¢ + ¢ singg) - — coscps (cosp; + ¢4 singy) s
w2
= cosq (COSP2 + 2 singso)

One of the phase extremaisat ¢, = m — ¢4 becauseatp, = m — ¢,

C;t(f = 0 [from Eq. (28)] so d¢/dt changes sign. This is called the “unstable fixed point”.
Also C;tqj = 0when ¢ = ¢, Thisis called the “stable fixed point”.

Aqu W N w? s

cos sin = — cos(m — T — sin
T2 s, (OSOH9SING) = —op Cos(m = 90+ (1= gy sind) (32
\

Y Y
Kinetic Potential energy This is the equation of separatrix
energy
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The other phase extremum can be found from Eq. (31) by solving &

(cos ¢, + ¢, singg) = [cos(m — ) + (T — ¢s) singy) (33)

This can be solved numerically.

Longitudinal Acceptance (PLS)

3 1 | | I T 11=468
V, =1.8MV
I _. £, =500.0816 MHz
_ e N | ¢, =172.8298"
= " v, =0.010969
SO £ =11.721kHz
S
a | [2—E = +2.34%
-2 4 NV
o =0.00181
9 so 100 150 200 250 a0 a0 = /174 =291.8¥

Phase (degree)
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RF bucket height (Energy acceptance )

The time (or s) derivative of the RF phase (or the energy change) reaches maximum
(the second derivative is zero) at the synchronous phase, ¢ = ¢,. See Eq. (28).

The equation of the separatrix at this point becomes [from Eq. (32)]
Aqsﬁmx = 2(‘)52 [2 + (2¢5 — ) tangg]

Replacing the time derivative of the phase from the first energy-phase relation, we get
the RF bucket height which is the maximum energy acceptance of the synchrotron:

AE g 1/2
_ RF _ _
<_Eo>max = £, [nhn 7 (G = 29.) sing — 2cospe) 39

RF bucket height defines the energy acceptance which depends strongly on the choice
of the synchronous phase. It plays an important role on injection matching and
influences strongly on the beam life time in electron storage rings. In PLS-2,

()  ~2.44% when Vge = 3.2 MV.

0" max

A region within a separatrix, where the particles perform stable oscillations, is known
as an RF bucket.
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PLS-2, C, = 281.82m

longitudinal phase space

dE/E (%)

T T T T T T T T T T T T T T T T T T T T T T T
0 30 &0 S0 120 150 180 210 240 270 300 330 380 350 420 450 480 510 340 370 600 630 660 600
phase (degrees)

(green:separatrices; red:unstable; blue:stable trajectories)

E =3.0GeV,Vgr = 3.2 MV, fap = 499.97323 MHz, h = 470,U, = 1.04 MeV
P = 160.994°, £, = 10.589 kHz,vg = 0.009954, a, = 0.001299, 5; = 6.336 mm

V A
RE —3.071 Over-voltage factor (E—E) ~2.44%

Uy 07 max
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