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5. Dispersion Function

References:
1. A. Wolski, Linear Dynamics, Lecture notes, November 2012
2. A. Wolski, Beam Dynamics in Particle Accelerators, 2nd ed., World Scientific 
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The transfer matrix for one cell of a FODO structure (without bends) is

𝑅𝑅 =

1 −
𝐿𝐿2

2𝑓𝑓2
𝐿𝐿
𝑓𝑓

𝐿𝐿 + 2𝑓𝑓 0 0 0 0

𝐿𝐿
4𝑓𝑓3

𝐿𝐿 − 2𝑓𝑓 1 −
𝐿𝐿2

2𝑓𝑓2
0 0 0 0

0 0 1 −
𝐿𝐿2

2𝑓𝑓2
−
𝐿𝐿
𝑓𝑓

𝐿𝐿 − 2𝑓𝑓 0 0

0 0 −
𝐿𝐿

4𝑓𝑓3
𝐿𝐿 + 2𝑓𝑓 1 −

𝐿𝐿2

2𝑓𝑓2
0 0

0 0 0 0 1
2𝐿𝐿
𝛽𝛽02𝛾𝛾02

0 0 0 0 0 1

If we choose the drift length 𝐿𝐿 and the quadrupole focal length 𝑓𝑓 properly, particles 
oscillate in the transverse planes as they travel along the beamline. However, there are no 
longitudinal oscillations. From the above transfer matrix we can derive the longitudinal 
equations of motion:

𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑 =

𝑝𝑝𝑡𝑡
𝛽𝛽02𝛾𝛾02

,
𝑑𝑑𝑝𝑝𝑡𝑡
𝑑𝑑𝑑𝑑 = 0

Let us consider now how these equations are affected if we introduce dipole magnets 
into the beamline.

(1)

(2)

(HW 1: Prob. 4) 

𝐿𝐿
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𝑅𝑅 =

cos 𝜃𝜃 𝜌𝜌 sin 𝜃𝜃 0 0 0
𝜌𝜌 1 − cos 𝜃𝜃

𝛽𝛽0

−
sin 𝜃𝜃
𝜌𝜌

cos 𝜃𝜃 0 0 0
sin 𝜃𝜃
𝛽𝛽0

0 0 1 𝐿𝐿 0 0
0 0 0 1 0 0

−
sin 𝜃𝜃
𝛽𝛽0

−
𝜌𝜌 1 − cos 𝜃𝜃

𝛽𝛽0
0 0 1

𝐿𝐿
𝛽𝛽02𝛾𝛾02

−
𝐿𝐿 − 𝜌𝜌 sin 𝜃𝜃

𝛽𝛽02
0 0 0 0 0 1

Recall the transfer matrix for a uniform sector bending magnet (i.e. 𝑘𝑘1 = 0) with the 
dipole field matched to the reference momentum [Eq. (39) in Lecture 2,3]

(3)

where 𝐿𝐿 is the path length of the reference particle in the bending magnet, which is 
usually called the length of the dipole magnet (should not be confused with the physical 
length of the magnet) and 𝜃𝜃 = 𝐿𝐿

𝜌𝜌
is the bending angle.

Note the non-zero 𝑅𝑅16 and 𝑅𝑅26 terms in this transfer matrix; these terms give the change 
in the horizontal coordinate and momentum with respect to changes in the energy 
deviation (actually 𝑝𝑝𝑡𝑡 ). They describe the "dispersion" introduced by the bending magnet. 
We can generalize the idea of dispersion to a dispersion function.
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𝑅𝑅 =

• • 0 0 0 •
• • 0 0 0 •
0 0 • • 0 0
0 0 • • 0 0
• • 0 0 1 •
0 0 0 0 0 1

Consider a periodic beamline consisting of drifts, normal quadrupoles, and dipoles 
bending in the horizontal plane. In general, the transfer matrix for one periodic cell takes 
the form

where • represents some non-zero value. The vertical motion is decoupled from the 
horizontal and the longitudinal motion, but the horizontal motion and the longitudinal 
motion are coupled to each other. However, the horizontal motion has no dependence on 
the longitudinal coordinate 𝑧𝑧;  this is because, in the absence of RF cavities, the fields 
have no time dependence.

(3)

Since the horizontal motion is completely decoupled from the vertical motion and from the 
longitudinal coordinate 𝑧𝑧, the horizontal motion can be described in terms of a 3 × 3
matrix as follows

𝑥𝑥
𝜋𝜋𝑥𝑥/𝑝𝑝0
𝑝𝑝𝑡𝑡 𝑠𝑠=𝑠𝑠0+𝐶𝐶0

=
𝑅𝑅11 𝑅𝑅12 𝑅𝑅16
𝑅𝑅21 𝑅𝑅22 𝑅𝑅26

0 0 1

𝑥𝑥
𝜋𝜋𝑥𝑥/𝑝𝑝0
𝑝𝑝𝑡𝑡 𝑠𝑠=𝑠𝑠0

x (4)

where 𝐶𝐶0 is the length of a cell, measured along the reference orbit.
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Consider a particle moving through the lattice with some energy deviation ∆𝐸𝐸 = 𝐸𝐸 − 𝐸𝐸0. 
There exists a trajectory that this off-energy particle can follow. We can show the 
existence of this trajectory by actually calculating what it is. The periodic condition is 

�𝑥𝑥
�𝜋𝜋𝑥𝑥/𝑝𝑝0
𝑝𝑝𝑡𝑡 𝑠𝑠=𝑠𝑠0+𝐶𝐶0

=
�𝑥𝑥

�𝜋𝜋𝑥𝑥/𝑝𝑝0
𝑝𝑝𝑡𝑡 𝑠𝑠=𝑠𝑠0

(5)

From Eqs. (4) and (5), we find

�𝑥𝑥
�𝜋𝜋𝑥𝑥/𝑝𝑝0

= 1 − 𝑅𝑅22 −𝑅𝑅12
−𝑅𝑅21 1 − 𝑅𝑅22

−1 𝑅𝑅16
𝑅𝑅26

𝑝𝑝𝑡𝑡
(6)

The dispersion function 𝜂𝜂𝑥𝑥 (and its conjugate 𝜂𝜂𝑝𝑝𝑥𝑥) is defined as the change in the 
horizontal orbit offset (and scaled canonical momentum offset) per relative momentum 
deviation 𝛿𝛿 = 𝑝𝑝−𝑝𝑝0

𝑝𝑝0
= Δ𝑝𝑝

𝑝𝑝0
. But Eq. (6) is given with 𝑝𝑝𝑡𝑡 instead of 𝛿𝛿 so we must find the 

relationship between these two variables; let’s recall

𝑝𝑝𝑡𝑡 =
𝐸𝐸
𝑐𝑐𝑝𝑝0

−
1
𝛽𝛽0

=
𝐸𝐸 − 𝐸𝐸0
𝑐𝑐𝑝𝑝0

=
∆𝐸𝐸
𝑐𝑐𝑝𝑝0

From 𝐸𝐸2 = 𝑝𝑝2𝑐𝑐2 + 𝑚𝑚2𝑐𝑐4 we find ∆𝐸𝐸 =
𝑐𝑐2𝑝𝑝∆𝑝𝑝
𝐸𝐸

𝑝𝑝𝑡𝑡 =
∆𝐸𝐸
𝑐𝑐𝑝𝑝0

=
𝑐𝑐𝑐𝑐∆𝑝𝑝
𝑝𝑝0𝐸𝐸

= 𝛽𝛽
∆𝑝𝑝
𝑝𝑝0

= 𝛽𝛽𝛿𝛿 ≈ 𝛽𝛽0𝛿𝛿 (7)

Thus, to first order in small variables we get
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𝜂𝜂𝑥𝑥
𝜂𝜂𝑝𝑝𝑥𝑥

= 𝛽𝛽0
1 − 𝑅𝑅22 −𝑅𝑅12
−𝑅𝑅21 1 − 𝑅𝑅22

−1 𝑅𝑅16
𝑅𝑅26

Therefore from Eq. (6) we have

(8)

If the inverse of the matrix in Eq. (8) exists, then the dispersion function also exists.
Strictly speaking, Eq. (8)  is only valid if there are no RF cavities in the ring, and the particle 
energy is constant.

𝑥𝑥
𝜋𝜋𝑥𝑥/𝑝𝑝0
𝑝𝑝𝑡𝑡 𝑠𝑠

= 𝑀𝑀(𝑠𝑠|𝑠𝑠0)
𝑥𝑥

𝜋𝜋𝑥𝑥/𝑝𝑝0
𝑝𝑝𝑡𝑡 𝑠𝑠0

= 𝑀𝑀
𝑥𝑥𝛽𝛽

𝜋𝜋𝑥𝑥𝛽𝛽/𝑝𝑝0
0 𝑠𝑠0

+ 𝑀𝑀
𝑥𝑥𝜂𝜂

𝜋𝜋𝑥𝑥𝜂𝜂/𝑝𝑝0
𝑝𝑝𝑡𝑡 𝑠𝑠0

Once the dispersion function 𝜂𝜂𝑥𝑥 and 𝜂𝜂𝑝𝑝𝑥𝑥 are found with Eq. (8), we can propagate them 
to find their values at any place in the ring. Evolution of a particle in phase space from 
𝑠𝑠 = 𝑠𝑠0 to 𝑠𝑠 can be expressed as

where 𝑀𝑀 is a 3 × 3 transfer matrix from 𝑠𝑠 = 𝑠𝑠0 to 𝑠𝑠 and we let 𝑥𝑥 = 𝑥𝑥𝛽𝛽 + 𝑥𝑥𝜂𝜂, 𝜋𝜋𝑥𝑥
𝑝𝑝0

=
𝜋𝜋𝑥𝑥𝛽𝛽
𝑝𝑝0

+
𝜋𝜋𝑥𝑥𝜂𝜂
𝑝𝑝0

.

(9)

Since 𝑥𝑥 = 𝑥𝑥𝛽𝛽 + 𝑥𝑥𝜂𝜂 = 𝑥𝑥𝛽𝛽 + 𝜂𝜂𝑥𝑥𝛿𝛿, Eq. (9) becomes

𝑥𝑥𝛽𝛽 + 𝜂𝜂𝑥𝑥𝛿𝛿
𝜋𝜋𝑥𝑥𝛽𝛽/𝑝𝑝0 + 𝜂𝜂𝑝𝑝𝑥𝑥𝛿𝛿

0 + 𝛽𝛽0𝛿𝛿 𝑠𝑠

= 𝑀𝑀
𝑥𝑥𝛽𝛽

𝜋𝜋𝑥𝑥𝛽𝛽/𝑝𝑝0
0 0

+ 𝑀𝑀
𝜂𝜂𝑥𝑥𝛿𝛿
𝜂𝜂𝑝𝑝𝑥𝑥𝛿𝛿
𝛽𝛽0𝛿𝛿 0

(10)

𝜋𝜋𝑥𝑥𝜂𝜂
𝑝𝑝0

= 𝜂𝜂𝑝𝑝𝑥𝑥𝛿𝛿

𝜂𝜂𝑝𝑝𝑥𝑥 =
𝜋𝜋𝑥𝑥/𝑝𝑝0
𝛿𝛿

𝜂𝜂𝑥𝑥 =
𝑥𝑥
𝛿𝛿
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From this we have
𝜂𝜂𝑥𝑥𝛿𝛿
𝜂𝜂𝑝𝑝𝑥𝑥𝛿𝛿
𝛽𝛽0𝛿𝛿 𝑠𝑠

=
𝑅𝑅11 𝑅𝑅12 𝑅𝑅16
𝑅𝑅21 𝑅𝑅22 𝑅𝑅26

0 0 1

𝜂𝜂𝑥𝑥𝛿𝛿
𝜂𝜂𝑝𝑝𝑥𝑥𝛿𝛿
𝛽𝛽0𝛿𝛿 𝑠𝑠=𝑠𝑠0

𝑀𝑀(𝑠𝑠|𝑠𝑠0) =
𝑅𝑅11 𝑅𝑅12 𝑅𝑅16
𝑅𝑅21 𝑅𝑅22 𝑅𝑅26

0 0 1

where we set

𝜂𝜂𝑥𝑥
𝜂𝜂𝑝𝑝𝑥𝑥
𝛽𝛽0 𝑠𝑠

=
𝑅𝑅11 𝑅𝑅12 𝑅𝑅16
𝑅𝑅21 𝑅𝑅22 𝑅𝑅26

0 0 1

𝜂𝜂𝑥𝑥
𝜂𝜂𝑝𝑝𝑥𝑥
𝛽𝛽0 𝑠𝑠=𝑠𝑠0

or

(11) 

Eq. (11) is the one for propagation of 𝜂𝜂𝑥𝑥 and 𝜂𝜂𝑝𝑝𝑥𝑥 from 𝑠𝑠 = 𝑠𝑠0 to 𝑠𝑠. If the transfer matrix 
𝑀𝑀 is for a unit (or cell) of length 𝐿𝐿 in a circular accelerator, then we get from

Equation (11) indicates that 𝜂𝜂𝑥𝑥 and 𝜂𝜂𝑝𝑝𝑥𝑥are eigenvector components of the revolution 
matrix 𝑀𝑀 with eigenvalue one. 

𝑥𝑥𝛽𝛽
𝜋𝜋𝑥𝑥𝛽𝛽/𝑝𝑝0

0 𝑠𝑠

= 𝑀𝑀
𝑥𝑥𝛽𝛽

𝜋𝜋𝑥𝑥𝛽𝛽/𝑝𝑝0
0 𝑠𝑠=𝑠𝑠0

𝜂𝜂𝑥𝑥(𝑠𝑠 = 𝑠𝑠0 + 𝐿𝐿) = 𝑅𝑅11𝜂𝜂𝑥𝑥(𝑠𝑠0) + 𝑅𝑅12𝜂𝜂𝑝𝑝𝑥𝑥(𝑠𝑠0) + 𝛽𝛽0𝑅𝑅16
Choosing 𝑠𝑠0 to be the symmetry point, i.e. 𝜂𝜂𝑝𝑝𝑥𝑥 𝑠𝑠0 = 0, the dispersion function at the 
symmetry point is

𝜂𝜂𝑥𝑥 =
𝛽𝛽0𝑅𝑅16(𝐿𝐿)

1 − 𝑅𝑅11(𝐿𝐿) (12) 
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PLS-2, 3 GeV electron storage ring

𝜂𝜂𝑥𝑥

𝛽𝛽𝑥𝑥
𝛽𝛽𝑦𝑦
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