
Homework #2

2025 Accelerator Summer School

Due Aug. 7 (Thu.), 9:30 AM, 2025

1. Suppose an electron emits a photon of energy u: this leads to an instantaneous change in
the energy deviation δ. The values of z and δ following the photon emission are

z′ = z ≃ αpc

ωs
δ0 cos(θ), δ′ = δ −∆δ = δ0 sin(θ)−

u

E0
. (1)

(a) Show that the amplitude of the energy oscillation after the photon emission is given
by

δ′20 = δ20 − 2δ0
u

E0
sin(θ) +

u2

E2
0

.

(b) Averaging over all particles in the bunch, show that the change in the mean square
energy deviation ∆σ2

δ = ⟨δ′2⟩ − ⟨δ2⟩ is given by

∆σ2
δ =

⟨u2⟩
2E2

0

.

2. For the FODO lattice, we approximate the ratio of the synchrotron integrals as follows:

I5
I2

=

(
4 +

ρ2

f2

)− 3
2
[
8− ρ2

2f2
θ2 +O(θ4)

]
. (2)

Assuming that ρ ≫ 2f ≫ L/2, and using approximation jx ≈ 1, show that the natural
emittance in FODO lattice is given by

ε0,FODO ≈ Cqγ
2

(
2f

L

)3

θ3.

3. [Sextupole in a Periodic FODO Cell] Consider a periodic FODO cell of total length L
in the horizontal plane, with linear focusing function K(s) and a single thin sextupole of
integrated strength k2 located at s = s0. Thus,

S(s) = k2δ
(
s− s0

)
.

(a) Hamiltonian Formulation. Derive the full Hamiltonian

H(x, p; s) = H0(x, p; s) +H1(x; s)

where

H0(x, p; s) =
p2

2
+

K(s)

2
x2,

H1(x; s) =
k2
6
x3δ
(
s− s0

)
.
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(b) Floquet (Normalized Coordinates) Transformation.Apply the canonical change
of variables

x =
√
β(s)X, p =

1√
β(s)

(
P − β′(s)

2 X
)

where β(s) is the periodic Courant-Snyder beta-function. Show that in the new
variables the linear Hamiltonian becomes

H0 =
P 2 +X2

2

and that the sextupole term at s = s0 is

H1 = δ
(
s− s0

)
εX3, ε =

k2β(s0)
3/2

6
.

Include each algebraic step and note the choice β′(s0) = 0 at the sextupole.

(c) Action–Angle Variables. Introduce action–angle variables (J, ϕ) by

X =
√
2J cosϕ, P = −

√
2J sinϕ,

so that the unperturbed Hamiltonian reads H0 = J . Express the full Hamiltonian as

H(J, ϕ; s) = J + δ
(
s− s0

)
ε(2J)3/2 cos3 ϕ.

4. [Nonlinear Hamiltonian and Resonance Harmonics] In a three-fold symmetric stor-
age ring with thin sextupoles located at positions s = si (i = 1, 2, 3), the one-turn Hamil-
tonian in action–angle variables is given by

H0(J) = J,

and each sextupole contributes an instantaneous perturbation

H1,i(J, ϕ; s) = δ(s− si)εi(2J)
3/2 cos3

(
ϕ+ ϕi

)
, εi =

k2β(si)
3/2

6
.

(a) Effective Nonlinear Hamiltonian. Show that integrating the perturbations over
one turn yields the secular (angle-averaged) Hamiltonian

Heff(J) = J +
∑
m

Gm(J),

where the Fourier coefficients

Gm(J) =

3∑
i=1

εi(2J)
3/2 cos

(
mϕi

)
correspond to the m-th harmonic of the combined sextupole kicks.

Hint: The m-th harmonic coefficient can be extracted by the angle-average

Gm(J) =
1

2π

∫ 2π

0

[ 3∑
i=1

H1,i(J, ϕ; s)
]
cos(mϕ)dϕ,

which filters out all non-secular terms and retains only the slowly varying component.
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(b) Resonance Harmonics m = 1, 3. Using the identity

cos3 θ = 3
4 cos θ +

1
4 cos 3θ,

demonstrate that only the m = 1 and m = 3 harmonics appear in each H1,i. Discuss
why these two harmonics are the primary drivers of horizontal nonlinear resonances
in the three-fold symmetric lattice.

5. [Transfer Map for a Sextupole Magnet] Consider a relativistic particle moving
through a thin sextupole magnet of length L with Hamiltonian

H(x, px) = −
√

1− p2x +
k2
6
x3, (3)

where x is the transverse coordinate, px the transverse momentum, and k2 the sextupole
strength.

(a) Full Lie Transformation. Apply the full Lie transformation to the phase-space
variables:

(x, px) 7→ e−L,:H:
(
x, px

)
. (4)

Using the Poisson-bracket expansion

e−L:H:f = f − L
[
H, f

]
+

L2

2!

[
H,
[
H, f

]]
+O(L3), (5)

derive the transfer map to second order in L

(b) Kick–Drift Splitting. Split the Hamiltonian into drift and kick parts:

Hdrift(px) = −
√
1− p2x, (6)

Hkick(x) =
k2
6
x3. (7)

Use the symmetric composition

e−L:H: ≈ e−
L
2 :Hdrift:e−L:Hkick:e−

L
2 :Hdrift: = M+O(L3). (8)

Expand each exponential to O(L2) and show explicitly:

M : xout = x+
[
· · ·
]
L+

[
· · ·
]
L2, (9)

px,out = px +
[
· · ·
]
L+

[
· · ·
]
L2. (10)

(c) Symplecticity Check. Compute the Jacobian matrix of each map:

M =

(
∂xout
∂x

∂xout
∂px

∂px,out
∂x

∂px,out
∂px

)
= M (0) + LM (1) + L2M (2) +O(L3). (11)

Verify to second order that

MTJM = J +O(L3), J =

(
0 1
−1 0

)
. (12)

Conclude both the full Lie map and the kick–drift map are symplectic to O(L2).
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