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In the previous lectures...

So far, our analysis has been based on transfer maps

represented in the form of Taylor series.

For example:

x1 = R11x0 +R12px0 + T111x
2
0 + T112x0px0 + T122p

2
x0 + · · ·

(1)

px1 = R21x0 +R22px0 + T211x
2
0 + T212x0px0 + T222p

2
x0 + · · ·

(2)
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Limitations of Taylor maps

In simple cases, Taylor maps can be very useful and convenient.

For example, once the coefficients in a Taylor map for a

particular component (or section) in a beamline have been

worked out, a Taylor map can be readily implemented in a

tracking code.

Also, the coefficients in a Taylor map contain information

about the dynamics of the system.

However, in several degrees of freedom Taylor series quickly

become cumbersome, especially where high-order effects are

important.

It is also difficult to enforce certain desirable properties of the

dynamics (in particular, symplecticity) when using Taylor maps.

To make progress, we need to use more sophisticated tools.
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Basic tools and concepts

Some very powerful methods for analysis of nonlinear systems

are based on Hamiltonian mechanics. In this lecture, we review

the basic principles of Hamiltonian mechanics in the context of

accelerator beam dynamics.

In particular, we shall:

1. review Hamilton’s equations;

2. discuss the significance of symplecticity;

3. derive (and solve) the nonlinear equations of motion for a

drift space in an accelerator;

4. review canonical transformations, and introduce

action–angle variables.
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Basic tools and concepts

By the end of this lecture, you should be able to:

• derive the equations of motion for a dynamical system with

a given Hamiltonian;

• be able to express relationships between different sets of

variables in the form of canonical transformations.
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Hamilton’s equations

In Hamiltonian mechanics, the state of a particle is specified by

giving particular values for a set of dynamical variables.

The dynamical variables occur in pairs, with each pair

consisting of a co-ordinate and a conjugate momentum.

The dynamics of the particle are described by expressing the

dynamical variables as functions of an independent variable (for

example, time t).
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Equation of motion for a harmonic oscillator

For example, for a particle of mass m performing simple

harmonic motion with frequency ω, the equations of motion are

derived from Newton’s second law:

dq

dt
=

p

m
,

dp

dt
= −mω2q, (3)

where q = q(t) is the position of the particle at time t, and

p = p(t) is the momentum of the particle at time t.

The equations of motion have solution:

q(t) = a cos(ωt+ ϕ0), (4)

p(t) = −mωa sin(ωt+ ϕ0), (5)

where a (the amplitude) and ϕ0 (a constant phase) are

constants determined by the initial conditions.
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Hamilton’s equations

In Newtonian mechanics, the equations of motion for a particle

in a specific case are determined by the force F on the particle:

dq

dt
=

p

m
,

dp

dt
= F. (6)

In Hamiltonian mechanics, the equations of motion are derived

from a function called the Hamiltonian.

The Hamiltonian is a function of the dynamical variables and

(in general) the independent variable.

Given the Hamiltonian, we can use Hamilton’s equations to

construct the equations of motion in a particular case.
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Hamilton’s equations

If the dynamical variables are (qi, pi) and the independent

variable is t, Hamilton’s equations are:

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −
∂H

∂qi
. (7)

where H = H(qi, pi; t) is the Hamiltonian.

In Newtonian mechanics, the momentum of a particle is

generally given by the product of the mass and the velocity,

i.e. p = mdq/dt.

In Hamiltonian mechanics, an expression for the momentum

can be obtained from Hamilton’s equations: the momentum is

not always the mass times the velocity.

The Hamiltonian must be expressed in terms of the

co-ordinates and the conjugate momenta, and not in terms of

the velocities.
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Example: the simple harmonic oscillator

In some simple cases, the Hamiltonian takes the form:

H = T + V, (8)

where T is the kinetic energy of the particle, and V is the

potential energy.

Consider a particle with mass m and co-ordinate q, moving in a

potential:

V =
1

2
kq2. (9)

In this case (not in general), the momentum is p = mq̇. Then,

the Hamiltonian takes the form:

H =
1

2m
p2 +

1

2
kq2. (10)
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Example: the simple harmonic oscillator

The first of Hamilton’s equations (7) gives:

dq

dt
=

∂H

∂p
=

p

m
. (11)

This tells us that the momentum in this case corresponds to

the usual mechanical momentum; i.e. the product of the mass

and the velocity, p = mdq/dt.

The second of Hamilton’s equations (7) gives:

dp

dt
= −

∂H

∂q
= −kq. (12)

This expresses Newton’s second law of motion for a force −kq.

Combining the two equations gives the familiar second-order

equation of motion for a simple harmonic oscillator:

d2q

dt2
= −ω2q, where ω =

√
k

m
. (13)
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Hamiltonian for a relativistic particle in an electromagnetic field

To apply Hamiltonian mechanics to a given system, we need to:

• define the dynamical variables;

• define the independent variable;

• write down the Hamiltonian that defines the physics of the

system.
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Hamiltonian for a relativistic particle in an electromagnetic field

In the case of a relativistic particle in an electromagnetic field,

we can choose to work in a Cartesian co-ordinate system, with

co-ordinates x, y, z, and conjugate momenta px, py, pz.

We can choose the time t as the independent variable.

The Hamiltonian is:

H =
√
c2(p⃗− qA⃗)2 +m2c4 + qφ, (14)

where:

• c is the speed of light in free space,

• m is the mass of the particle,

• q is the electric charge of the particle,

• A⃗ is the vector potential,

• and φ is the scalar potential.
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Hamiltonian for a relativistic particle in an electromagnetic field

Applying Hamilton’s equations with the Hamiltonian (14), we

find that the equations of motion for the co-ordinates give:

px = γm
dx

dt
+ qAx, (15)

and similarly for py and pz.

The equations of motion for the momenta lead to:

d2x

dt2
=

q

γm

(
Ex +

[
v⃗ × B⃗

]
x

)
, (16)

and similarly for y and z.

v⃗ = (ẋ, ẏ, ż) is the velocity of the particle.

The electric and magnetic fields E⃗ and B⃗ are derived from the

potentials A⃗ and φ in the usual way:

B⃗ = ∇× A⃗, E⃗ = −∇φ−
∂A⃗

∂t
. (17)
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Hamiltonian for a relativistic particle in an electromagnetic field

Equation (16) is the equation of motion that we would write

down for a relativistic particle in an electromagnetic field, using

Newton’s second law and the Lorentz force equation.

There are formal methods to derive the Hamiltonian (starting

from the Lagrangian for a given system).

Ultimately, the form of the Hamiltonian can be justified by

whether it gives the correct (observed) dynamics.
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The accelerator Hamiltonian

In a particle accelerator:

• It is convenient to work in a curved co-ordinate system,

with x and y the transverse co-ordinates with respect to

some “reference trajectory”.

• It is convenient to choose the distance s along the

reference trajectory as the independent variable.

For simplicity, we shall assume that the reference trajectory lies

in a horizontal plane.

Then, the reference trajectory can be defined by a sequence of

straight lines of given lengths, joined by lines with given lengths

and curvatures.
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The accelerator Hamiltonian

The longitudinal co-ordinate z of a particle is defined:

z(s) = c(t0 − t), (18)

where the particle arrives at s at time t, and a reference particle

(travelling along the reference trajectory with momentum P0)

arrives at s at time t0.
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The accelerator Hamiltonian

If we were using Cartesian co-ordinates, and using time as the

independent variable, then we could just use the Hamiltonian

(14) for a particle in an accelerator beamline.

The dynamics at any point along the beamline would be

defined by the scalar and vector potential at the given point.

Since we are using a curved co-ordinate system, with path

length s as the independent variable, the Hamiltonian takes a

rather more complicated form.

It is possible to derive the accelerator Hamiltonian starting

from (14); but to save time we shall just quote the result.

For a full derivation of the accelerator Hamiltonian, see “Beam Dynamics in

High Energy Particle Accelerators” by A. Wolski.
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The accelerator Hamiltonian

The Hamiltonian for a charged particle in an accelerator
beamline is:

H = −(1 + hx)

√(
1

β0
+ δ −

qϕ

P0c

)2

−
(
px −

q

P0
Ax

)2

−
(
py −

q

P0
Ay

)2

−
1

β2
0γ

2
0

−(1 + hx)
q

P0
As +

δ

β0
. (19)

Here, P0 = β0γ0mc is the reference momentum (i.e. the

momentum of the reference particle, with velocity β0c).

h is the curvature of the reference trajectory (assumed to lie in

the x− s plane):

h =
1

ρ
, (20)

where ρ is the local radius of curvature.
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The accelerator Hamiltonian

The momenta conjugate to the co-ordinates x and y are given

by:

px =
γmẋ+ qAx

P0
, py =

γmẏ + qAy

P0
. (21)

Here, ẋ and ẏ are the transverse components of the velocity

(i.e. the time derivatives of the transverse co-ordinates).

γ is the relativistic factor for the particle (not necessarily equal

to γ0).
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The accelerator Hamiltonian

The longitudinal dynamical variables are (z, δ), where:

z = c(t0 − t), (22)

• t0 is the time at which the reference particle arrives at a

location s along the reference trajectory,

• t is the time at which the given particle crosses the plane

perpendicular to the reference trajectory at s.

Note that if t < t0, the chosen particle arrives at s sooner than

the reference particle, i.e. the chosen particle is ahead of the

reference particle.

The longitudinal conjugate momentum δ is defined by:

δ =
E

P0c
−

1

β0
=

E − E0

β0E0
, (23)

where E is the kinetic energy of the particle, and E0 is the

kinetic energy of a particle with the reference momentum P0.
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The accelerator Hamiltonian in a drift space

As an example, let us consider the Hamiltonian in a drift space,

where h = 0, and there are no electric or magnetic fields (so we

can take the scalar and vector potentials to be zero):

H = −

√√√√( 1

β0
+ δ

)2
− p2x − p2y −

1

β2
0γ

2
0
+

δ

β0
. (24)

The Hamiltonian has no dependence on the co-ordinates x, y or

δ. This means, from Hamilton’s equations, that the momenta

are conserved:

dpx

ds
= −

∂H

∂x
= 0, (25)

dpy

ds
= −

∂H

∂y
= 0, (26)

dδ

ds
= −

∂H

∂z
= 0. (27)
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The accelerator Hamiltonian in a drift space

The equations of motion for the co-ordinates are also

reasonably straightforward:

dx

ds
=

∂H

∂px
=

px

ps
, (28)

dy

ds
=

∂H

∂py
=

py

ps
, (29)

dz

ds
=

∂H

∂δ
=

1

β0
−

1
β0

+ δ

ps
, (30)

where we have defined ps (not a dynamical variable!) as:

ps =

√√√√( 1

β0
+ δ

)2
− p2x − p2y −

1

β2
0γ

2
0
. (31)

Note that since px, py and δ are constants of the motion, ps is

constant.

Nonlinear Beam Dynamics 22 Part 2: Hamiltonian Mechanics



The accelerator Hamiltonian in a drift space

From the above results, it is possible to write the map for a

drift space in closed form.

For the transverse variables, we have:

x1 = x0 +
px0
ps

∆s, px1 = px0, (32)

y1 = y0 +
py0

ps
∆s, py1 = py0, (33)

where x0 = x(s0), x1 = x(s0 +∆s), and similarly for the other

variables.

And for the longitudinal variables, we have:

z1 = z0 +

 1

β0
−

1
β0

+ δ0

ps

 ∆s, δ1 = δ0. (34)
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The accelerator Hamiltonian in a drift space

The map has a nonlinear dependence on the momenta px, py

and δ. However, the nonlinear effects only become significant

when the values of the momenta become very large.

To illustrate this, consider the case py0 = δ0 = 0. Then:

ps =
√
1− p2x0. (35)

In this case:

px =
γ0mẋ

P0
, so that lim

ẋ→β0c
px = 1. (36)

The horizontal momentum px has a maximum value of 1, which

occurs when the particle is travelling perpendicular to the

reference trajectory.
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The accelerator Hamiltonian in a drift space

Let us now plot:

∆x

∆s
=

px0√
1− p2x0

, (37)

(where ∆x = x1 − x0) as a function of px0.

There is a significant deviation from linearity when px0 is larger
than about 0.1.

Nonlinear Beam Dynamics 25 Part 2: Hamiltonian Mechanics



The accelerator Hamiltonian in a drift space

In the case that px0 = py0 = 0, the particle is travelling parallel
to the reference trajectory. Then, the Hamiltonian becomes:

H =
δ

β0
−

√√√√( 1

β0
+ δ

)2
−

1

β2
0γ

2
0
. (38)

It follows that the equation of motion for the longitudinal
co-ordinate is:

dz

ds
=

∂H

∂δ
=

1

β0
−

1
β0

+ δ√(
1
β0

+ δ
)2

− 1
β2
0γ

2
0

. (39)

Since, from equation (23), we have:

δ =
E − E0

β0E0
=

γ − γ0
β0γ0

, ∴
1

β0
+ δ =

γ

β0γ0
, (40)

we find that:
dz

ds
=

1

β0
−

1

β
, (41)

which is consistent with our interpretation of z, equation (22).
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The accelerator Hamiltonian in a drift space

Using a Hamiltonian approach, even the map for a drift space is

rather complicated.

It is possible to describe the dynamics using different variables,

that simplify the map. For example, instead of using px and py,

we could define:

x′ =
dx

ds
, and y′ =

dy

ds
. (42)

Then, the (transverse) map for a drift space would simply be:

x1 = x0 + x′0∆s, x′1 = x′0, (43)

y1 = y0 + y′0∆s, y′1 = y′0, (44)

with no dependence at all on the energy deviation.

This looks much simpler – why do we bother with the

Hamiltonian? There are three reasons...
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Hamiltonian mechanics and symplecticity

• Hamiltonian mechanics provides a highly systematic

framework for constructing the equations of motion for a

relativistic particle in even quite complicated

electromagnetic fields.

• Hamiltonian mechanics provides the basis for some powerful

analytical techniques for modelling and analysis of beam

dynamics.

• Proper use of Hamiltonian methods ensures the

conservation of phase space volumes (Liouville’s theorem),

which is a property of the physics of particles in accelerators

(nelgecting synchrotron radiation and collective effects).
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Hamiltonian mechanics and symplecticity

Let x⃗ be a vector constructed from the phase space variables.

If the values of the phase space variables at position s+∆s on

the reference trajectory are given by X⃗ = X⃗ (x⃗(s);∆s), then:

JTSJ = S, (45)

where J is the Jacobian of the transformation from s to s+∆s:

Jij =
∂Xi

∂xj
, (46)

and S is a block-diagonal matrix constructed from 2× 2

antisymmetric matrices S2:

S2 =

(
0 1
−1 0

)
. (47)

Any matrix that satisfies equation (45) is said to be a

symplectic matrix.
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Hamiltonian mechanics and symplecticity

Since the determinant of S is unity:

|S| = 1, (48)

it follows from (45) that if J is the Jacobian of a symplectic
map, then:

|J |2 = 1, i.e. |J | = ±1, (49)

where |J | is the determinant of J.

For a map to be symplectic, it is a necessary (but not
sufficient) condition for the Jacobian to have determinant ±1.

It follows immediately from this that symplectic maps preserve
volumes in phase space:∫

· · ·
∫

dX⃗ =
∫
· · ·

∫
|J | dx⃗ = ±

∫
· · ·

∫
dx⃗. (50)

In the context of Hamilton mechanics, equation (50) is called
Liouville’s theorem.
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Hamiltonian mechanics and symplecticity

In accelerator beam dynamics, Liouville’s theorem says that as
a bunch of particles is transported along a beamline (neglecting
radiation and interactions between the particles) the volume of
phase space occupied by the particles remains constant.

The total volume in phase space is one of a number of
invariants of Hamiltonian systems, known as Poincaré
invariants. The others are not so easily expressed as the
volume of an element in phase space, and since we do not need
them in this course, we do not discuss them further.

However, it is worth mentioning that the eigenvalues of the
matrix:

ΣS = ⟨x⃗x⃗T⟩S (51)

are conserved under a symplectic transformation.

The eigenvalues of ΣS are ±iεk, where k is an index over the
degrees of freedom of the system, and εk are the beam
emittances.
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Hamiltonian mechanics and symplecticity

Liouville’s theorem is easiest to visualize in one degree of

freedom, with a linear map...

...but the theorem generalizes to more degrees of freedom, and

nonlinear maps.
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Hamiltonian mechanics and symplecticity

As an example of a symplectic map, consider again the case of

a drift space. To simplify things further, let us consider only

the transverse motion. The map can be written:

X = x+
pxs√
1− p2x

(52)

PX = px. (53)

The Jacobian is:

J =


∂X
∂x

∂X
∂px

∂PX
∂x

∂PX
∂px

 =


1 s

(1−p2x)
3/2

0 1

 . (54)

The Jacobian is a function of the dynamical variables; but we

can still work out the matrix product with S. We find, as

expected, that:

JTSJ = S.

The case of three degrees of freedom starts to look more

complicated, but we still find that the map is symplectic.
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Canonical transformations

In our discussion so far, we considered transformations from

one point along the reference trajectory to another.

However, we can also consider transformations that define a

new set of variables X⃗ in terms of an existing set x⃗.

If the map is symplectic, then:

X⃗ = X⃗(x⃗), where
∂X⃗

∂x⃗
= J, and JTSJ = S. (55)

If the original variables x⃗ are canonical (i.e. obey Hamilton’s

equations) then the new set of variables are also canonical:

if
dx⃗

ds
= S

∂H

∂x⃗
, then

dX⃗

ds
= S

∂H

∂X⃗
. (56)

A transformation from one set of canonical variables to another

is called a canonical transformation.
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Canonical transformations: action–angle variables

Sometimes, it is convenient to work with dynamical variables
other than the “cartesian” variables (x, px, y, py, z, δ). This is the
case in nonlinear dynamics, where we often use “action–angle”
variables.

The action–angle variables (Jx, ϕx) for the horizontal motion
are defined by:

2Jx = γxx
2 +2αxxpx + βxp

2
x, (57)

tanϕx = −αx − βx
px

x
. (58)

Here, αx, βx and γx are the usual Courant–Snyder parameters,
defined for linear motion.

It can be shown that the Jacobian of the transformation is
symplectic: therefore, (ϕx, Jx) are canonical variables. (Note
that the angle ϕx is the co-ordinate, and the action Jx is the
conjugate momentum).
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Canonical transformations: action–angle variables

Action–angle variables are useful for linear dynamics. In that

case, we know that the betatron action is constant, and that

the rate of increase of betatron phase is given by 1/βx:

dϕx

ds
=

1

βx
, (59)

dJx

ds
= 0. (60)

Since action–angle variables are canonical variables, it should

be possible to obtain these equations of motion from a suitable

Hamiltonian. In fact, an appropriate Hamiltonian is given by:

H =
Jx

βx
. (61)
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Summary

• The equations of motion for a particle moving through electromagnetic
fields in an accelerator beamline (neglecting radiation and interactions
between particles) can be derived from Hamilton’s equations, with an
appropriate Hamiltonian.

• Expressed in canonical variables, the transformation representing motion
of a particle from one point along a beamline to another is symplectic
(that is, the Jacobian of the transformation is a symplectic matrix).

• A symplectic transformation from one set of variables to another is
called a canonical transformation. Sometimes, canonical
transformations provide a way to simplify the equations of motion.

• An example of a canonical transformation is provided by the
relationships between action–angle variables and the usual cartesian
variables. Action-angle variables are widely used in accelerator beam
dynamics.
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