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Introduction

Nonlinear effects play a crucial role both when designing an

accelerator and during its operation.

Core Topics

• Transfer Maps

• Taylor Map

• Normal Forms

• Hamiltonian Mechanics

• Lie Transformations

• Symplectic Integration
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Sources of Non-Linearities

Any object creating nonlinear electromagnetic fields on the

trajectory of the beam can strongly influence the beam

dynamics.

These fields may arise from imperfections in the machine

elements or be generated by the beam itself (space-charge,

beam–beam interactions).

Nonlinear elements can be introduced deliberately into the

lattice or may result from field errors in otherwise “linear”

magnets. Both types must be taken into account for a reliable

description of beam stability and dynamic aperture.
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Unwanted Nonlinear Machine Elements

In the ideal case, dipole and quadrupole magnets produce pure

n = 1 or n = 2 multipole fields, but systematic or random

deviations introduce higher-order components.

In cylindrical coordinates (r, θ, s = 0) the transverse field

components admit a multipole expansion

Br(r, θ) =
∞∑
n=1

[
bn sin(nθ) + an cos(nθ)

] ( r

Rref

)n−1
,

Bθ(r, θ) =
∞∑
n=1

[
bn cos(nθ)− an sin(nθ)

] ( r

Rref

)n−1
,

(1)

where Rref is a reference radius and bn, an the normal and skew

multipole coefficients. Equivalently, in Cartesian form with

z = x+ iy = reiθ,

B(z) =
∞∑
n=1

(bn+ ian)
(

z

Rref

)n−1
. (2)
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Wanted Nonlinear Machine Elements

To correct chromaticity (momentum-dependent focusing) one

introduces sextupoles of strength k2.

These magnets generate fields larger than the intrinsic

multipole errors of dipoles and quadrupoles and, if placed in

regions of nonzero dispersion, provide an energy-dependent

focusing kick.

In periodic lattices sextupole strengths can be kept small; in

colliders special insertions with small dispersion and β-functions

require stronger sextupoles, which in turn reduce the dynamic

aperture.

Octupoles may be added to generate amplitude-dependent

tune spread (Landau damping).
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Space-Charge and Beam–Beam Effects

The beam itself produces nonlinear self-fields that perturb

particle trajectories.

For a round beam of line density n and rms size σ, the radial

electric and azimuthal magnetic fields are

Er(r) = −
ne

4πε0

∂

∂r

∫ ∞

0

exp
(
−r2/(2σ2 + q)

)
2σ2 + q

dq,

Bϕ(r) = −
ne βc µ0

4π

∂

∂r

∫ ∞

0

exp
(
−r2/(2σ2 + q)

)
2σ2 + q

dq.

(3)

In colliding-beam machines these beam–beam forces require

self-consistent treatment together with all other nonlinear fields

in the ring.
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Map-based Techniques: Transfer Maps

In the standard approach to single-particle dynamics in rings

one writes down the equations of motion and then seeks an

ansatz to solve them.

For linear motion this leads to the well-known Courant–Snyder

treatment, but it relies on assuming that the motion is both

stable and bounded, which need not be known a priori in a

non-linear system.

Instead of attempting to solve a global boundary-value

problem, one may cast the problem as an initial-value problem

by working directly with the transfer maps of the individual

machine elements.
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Linear Transfer Map

Consider the transverse coordinate x(s) satisfying the Hill’s

equation:

d2x

ds2
+K(s)x(s) = 0 , (4)

where K(s) is periodic in the ring (period C).

In that case one must solve a boundary-value problem

x(s+ C) = x(s), which obscures generalization to non-periodic

systems (linacs, beamlines, . . . ).
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Linear Transfer Map

Instead, for a linear, first order equation of the type

dx(s)

ds
= K(s)x(s), (5)

with an initial value at s0, the solution can always be written as

x(s) = a · x(s0) + b · x′(s0)
x′(s) = c · x(s0) + d · x′(s0).

(6)

This can be written in a matrix form as:(
x
x′

)
s

=

(
a b
c d

)(
x
x′

)
s0

(7)
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Linear Transfer Map

In general, for each element spanning s0 to s one defines the linear transfer
map (

x(s)
x′(s)

)
= M(s; s0)

(
x(s0)
x′(s0)

)
, (8)

where M(s; s0) is a 2× 2 matrix of determinant one.

By construction this is an initial-value formulation, and the overall map of a
lattice or ring is obtained by composition of the individual element maps:

M(s2; s0) = M(s2; s1)M(s1; s0) . (9)

Rather than solving a global boundary-value problem, one constructs the
transfer map of the lattice by composing the maps Mi of individual
elements. Starting from s0,(

x
x′

)
s0+L

= MN ◦MN−1 ◦ · · · ◦M1

(
x
x′

)
s0

≡ M(s0, s0 + L)

(
x
x′

)
s0

. (10)
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One Turn Map

In a strictly periodic machine the most important map is the

One–Turn–Map (OTM), which advances the phase-space

vector x = (x, x′) once around the ring.

If M(s0, C) is the transfer map from s0 to s0 + C, then for any

initial coordinates (x(s0), x
′(s0)) we have(

x
x′

)
s0+C

= MOTM

(
x
x′

)
s0

, (11)

and the quadratic form(
x
x′

)T
s0

·MOTM

(
x
x′

)
s0

= J = const. (12)

is an invariant of the motion.
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Nonlinear Transfer Map: Taylor Map

To include nonlinear fields one generalizes from matrices to

multivariate Taylor maps.

For a single element one writes

xout = M
(
xin

)
=

∑
k1,k2,...

Mi,k1k2··· x
k1
in p

k2
x,in · · · , (13)

where the coefficients Mi,k1k2··· encode the nonlinear response

up to any desired order.

The overall map is again obtained by composition

(concatenation) of element maps, and may be symplectically

truncated to finite order using techniques of differential algebra.
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Nonlinear Transfer Map: Lie Map

An alternative, manifestly symplectic representation uses Lie

operators.

One seeks a factorization of the full one-turn (or one-pass)

map in the form

M = exp
(
:f2:

)
exp

(
:f3:

)
exp

(
:f4:

)
· · · , (14)

where each generator fn is a homogeneous polynomial of

degree n in the phase-space variables, and : · : denotes the

Poisson-bracket operator.

In practice one computes the fn using the Dragt–Finn

factorization algorithm, yielding a sequence of symplectic maps

truncated to any desired order.
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Symplecticity

In accelerator physics, symplecticity refers to the requirement

that any map or integrator describing charged-particle motion

must exactly preserve the phase-space volume and the

underlying Hamiltonian structure.

Particle motion in electromagnetic fields is governed by a

Hamiltonian, H(q, p), so the true continuous flow (q(t), p(t))

conserves phase-space volume by Liouville’s theorem.

A discrete transfer map, M : (q′, p′) → (q, p) is symplectic if its

Jacobian J = ∂(q′, p′)/∂(q, p) satisfies

JTSJ = S (15)

where S =

(
0 I
−I 0

)
and I is the identity in each degree of

freedom.
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Symplecticity

Phase-space volume/area (emittance) remains constant under

ideal transport—no artificial damping or growth.

Non-symplectic errors accumulate, producing spurious damping,

excitation, or chaotic artifacts.

Ensures that numerical tracking faithfully reproduces

resonances, dynamic-aperture limits, and tune shifts without

unphysical artifacts.

Fundamental for accelerator design, as poor symplecticity can

lead to erroneous predictions of beam loss or lifetime.
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Symplecticity

A linear map is symplectic if the matrix M representing the

map is symplectic, i.e. satisfies:

MTSM = S, (16)

where, in one degree of freedom (i.e. two dynamical variables),

S is the matrix:

S =

(
0 1
−1 0

)
. (17)

In one degree of freedom, it is a necessary and sufficient

condition for a matrix to be symplectic, that it has unit

determinant: but this condition does not generalize to more

degrees of freedom.

We shall consider what it means to say that a nonlinear map is

symplectic later in this course.
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Symplecticity: 2D Linear Transfer Map

In more degrees of freedom, S is constructed by repeating the

2× 2 matrix above on the block diagonal, as often as necessary.

For example, map M from phase-space point x1 to x2 must be

symplectic, meaning

MT SM = S, S =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , (18)

so that the phase-space area is preserved.
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Linear Normal Forms

The OTM M can be diagonalized into a normal form via a

similarity transformation: find an invertible matrix A such that

AMA−1 = R, (19)

where R is as simple as possible (in the ideal case, a pure

rotation). Equivalently,

M = ARA−1. (20)

In this normal form, the motion on the phase-space ellipse is

mapped to a rotation on a circle. Writing

A =

 √
β(s) 0

−α(s)/
√
β(s) 1/

√
β(s)

 , R =

(
cos∆µ sin∆µ

− sin∆µ cos∆µ

)
,

(21)

yields the Courant–Snyder (Twiss) parameters α, β and the

phase advance ∆µ.
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Normal Form Analysis

• The phase advance, µx is the “tune” Qx · 2π .

• β, α, . . . are the optical/lattice parameters and describe

phase space ellipse.

• The closed orbit (an invariant, identical coordinates after

one turn): MOTM ◦ (x, x′)co = (x, x′)co .
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Action–Angle Variables

Upon transformation to normal form, it is natural to introduce

action–angle variables (Jx, ψx) via

x =
√
2 Jx βx cosψx,

px ≡ x′ = −
√
2 Jx
βx

(
sinψx+ αx cosψx

)
,

(22)

where Jx = 1
2

(
γxx2 +2αxpx+ βxp2x

)
.

So that the motion corresponds to uniform rotation in ψx at

constant radius
√
2Jx in the normalized phase space.
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Beam Emittance

For a beam (ensemble of particles), the rms emittance εx is

defined as the average action:

⟨x2⟩ = ⟨2 Jx βx cos2ψx⟩ = 2βx ⟨Jx⟩⟨cos2ψx⟩ (23)

using ⟨cos2ψx⟩ = 1
2.

One also finds

⟨p2x⟩ = γx εx, ⟨x px⟩ = −αx εx, (24)

and hence the emittance can be written in terms of second

moments as

εx =
√
⟨x2⟩ ⟨p2x⟩ − ⟨x px⟩2. (25)
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Nonlinear Taylor maps

Any smooth non-linear map can be expanded in a truncated Taylor series.

In 2D transverse phase space,

xj(s2) =
4∑

k=1

Rjk xk(s1) +
4∑

k=1

4∑
l=1

Tjkl xk(s1)xl(s1), (26)

where xj for j = 1, . . . ,4 represents (x, x′, y, y′) and (R, T ) define the
2nd-order map M(2); higher orders add tensors, e.g., for the 3rd order map
M(3) = (R, T, U) we add a third order tensor:

+
4∑

k=1

4∑
l=1

4∑
m=1

Ujklmxk(s1)xl(s1)xm(s1). (27)

In order to be a symplectic transfer map, the Jacobian matrix J should
fulfill the symplectic condition:

JTS J = S (28)

where Jjk = ∂xj(s2)/∂xk(s1).

This generally forces relations among the Taylor coefficients.
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Taylor Map Example: Sextupole

The explicit map for a sextupole is:

x2 = x1 + Lx′1 −k2
[L2

4

(
x21 − y21

)
+
L3

12

(
x1x

′
1 − y1y

′
1

)
+
L4

24

(
x′21 − y′21

)]
x2′ = x′1 −k2

[L
2

(
x21 − y21

)
+
L2

4

(
x1x

′
1 − y1y

′
1

)
+
L3

6

(
x′21 − y′21

)]
y2 = y1 + Ly′1 +k2

[L2

4
x1y1 +

L3

12

(
(x1y

′
1 + y1x

′
1

)
+
L4

24
x′1y

′
1

]
y′2 = y′1 +k2

[L
2
x1y1 +

L2

4

(
(x1y

′
1 + y1x

′
1

)
+
L3

6
x′1y

′
1

]
(29)

Then, the Jacobian matrix is:

J =


∂x2

∂x1

∂x2

∂x′
1

∂x2

∂y1
∂x2

∂y′
1

∂x′
2

∂x1

∂x′
2

∂x′
1

∂x′
2

∂y1

∂x′
2

∂y′
1

∂y2
∂x1

∂y2
∂x′

1

∂y2
∂y1

∂y2
∂y′

1
∂y′

2

∂x1

∂y′
2

∂x′
1

∂y′
2

∂y1

∂y′
2

∂y′
1

 (30)
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Symplecticity of the Taylor Map: Sextupole

For example,
∂x2
∂x1

= 1− k2

(
L2

2 x1 + L3

12x
′
1

)
∂x2
∂x′1

= L− k2

(
L3

12x1 + L4

12x
′
1

)
∂x′2
∂x1

= −k2
(
Lx1 + L2

4 x
′
1

)
∂x′2
∂x′1

= 1− k2

(
L2

4 x1 + L3

3 x
′
1

)

(31)

For k2 = 0, 
1 L 0 0
0 1 0 0
0 0 1 L
0 0 0 1

 (32)

For non-zero k2, the elements of Jacobian matrix depend on

initial values, i.e., (x1, y1).

Therefore, the Taylor transfer map is not symplectic.
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Thick and Thin Lenses

Exact maps for thick elements often lack closed-form solutions.

Instead, one uses thin-lens kicks interleaved with drifts, i.e.,

symplecticfying by construction, and refines accuracy by slicing

longer elements into multiple kicks.

A transfer map for a thick, linearized quadrupole of length L

and strength K:

M =

 cos (L
√
K) 1√

K
sin (L

√
K)

−
√
K sin (L

√
K) cos (L

√
K).

 (detM = 1), (33)
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Symplectic Taylor Map of a Quadrupole

For a “small” length L, the transfer map of a quadrupole can

be extended as a Taylor series:

Ms→s+L = L0 ·
(
1 0
0 1

)
+ L1 ·

(
0 1

−K 0

)
+ L2 ·

(
−1

2K 0

0 −1
2K

)
+ · · ·

(34)

If we keep terms up to the first order of L, then

Ms→s+L =

(
1 L

−KL 1

)
+O(L2) (35)

This transfer map is exact to the order of O(L2), but this

truncated map is not symplectic.
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Drift-Kick Model

Adding an O(L2) correction restores detM = 1 without

degrading accuracy:

M =

(
1 L

−KL 1−KL2

)
+O(L2). (36)

This transfer map can be obtained with the drift followed by

the kick: (
1 0

−KL 1

)(
1 L
0 1

)
=

(
1 L

−KL 1−KL2

)
(37)
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Symplectic Matrices and Symplectic Integration

We can construct a symplectic map to the order of O(L2) with

a single kick of strength KL at the element’s center

sandwiched by drifts L/2 each.

Ms→s+L =

(
1 1

2L
0 1

)(
1 0

−KL 1

)(
1 1

2L
0 1

)
+O(L2)

≈
(
1− 1

2KL
2 L− 1

4KL
3

−KL 1− 1
2KL

2

) (38)

Using a drift–kick–drift model (kick in the middle) yields an

O(L2) integrator, whereas applying the kick only at the entry or

exit gives O(L1) accuracy.

Thus proper splitting improves both accuracy and symplectic

consistency.
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Higher Order Symplectic Integration: 4th Order

Assume that an element is split into three kicks with 4 drift spaces:

The optimized strengths and drifts spaces between three kicks are:

a ≈ 0.6756 b ≈ −0.1756

α ≈ 1.3512 β ≈ −1.7024
(39)

Ref) E. Forest et al, “Fourth-order symplectic integration,” Physica D 43
(1990) 105.
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Higher Order Symplectic Integration: Yoshida Method

From the previous example, we learned that a fourth order

symplecitc integrator (3-kicks) can be constructed with a

second order symplectic opeartor (1-kick):

S4(t) = S2(x1t) ◦ S2(x0t) ◦ S2(x1t) (40)

where x0 = −21/3

2−21/3
≈ −1.7024 and x1 = 1

2−21/3
≈ 1.3512.

Then, from a fourth order to a sixth order:

S6(t) = S4(x1t) ◦ S4(x0t) ◦ S4(x1t) (41)

Therefore, in general,

Sk+2(t) = Sk(x1t) ◦ Sk(x0t) ◦ Sk(x1t) (42)

Ref) H. Yoshida, “Construction of higher order symplectic

integrators,” Phys. Lett. A, 150 (1990), p. 262.
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Resonances

Small periodic perturbations combine coherently when the

tunes (νx, νy) satisfy a resonance condition

mxνx+myνy = ℓ, (43)

with integers mx,my, ℓ.

The order of the resonance is |mx|+ |my| (first order: integer;

second: half-integer; etc.).

Resonances may be driven by dipole, quadrupole or

higher-order multipole fields, including sextupoles.
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Phase-advance dependence of kicks

• Dipole errors: A kick from a dipole-field error at s = s0
produces an angular deflection ∆x′. After one cell of phase
advance µx, the net kick over N identical cells is

N−1∑
k=0

∆x′ cos(kµx) = ∆x′
sin

(
Nµx/2

)
sin(µx/2)

cos
(
(N−1)µx

2

)
.

This vanishes if µx = π (half-integer tune,
νx = µx/2π = 1/2) and peaks if µx = 2π (νx = 1).

• Quadrupole errors: A focusing-error kick ∆k x similarly
adds coherently when µx = π (half-integer tune) and
cancels at µx = 2π.

• Sextupole kicks: A thin sextupole kick ∆px = −1
2k2Lx

2

behaves like a second-order perturbation. The kicks from
successive cells cancel if µx = (2m+1)π (νx= half-integer)
and reinforce if µx = 2mπ (νx= integer).
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General resonance condition

Particles experience resonant instability whenever their

horizontal and vertical tunes (νx, νy) satisfy

mx νx+my νy = ℓ, mx,my, ℓ ∈ Z. (79)

- The order of the resonance is |mx|+ |my|. - Examples:

• Integer resonance (|mx|+ |my| = 1), e.g. νx = 1.

• Half-integer (|mx|+ |my| = 2), e.g. 2νx = 1 or νx+ νy = 1.

• Third-order (|mx|+ |my| = 3) can be driven by sextupoles.
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Tune diagram

a) up to second order b) up to third order c) up to fourth order
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Driving terms and multipole sources

Although one often associates a resonance of order n with an

nth-order multipole (e.g. sextupole → n = 3), in practice:

• Higher-order multipoles can contribute to lower- and

higher-order resonances via nonlinear coupling.

• The actual strength of a particular (mx,my) resonance

depends on the Fourier coefficients of the combined

perturbations along the lattice.
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Systematic vs. non-systematic resonances

For a ring built from P identical cells, the resonance ℓ is

suppressed (“non-systematic”) at first order if

ℓ

P
/∈ Z,

because the phase advance per cell µx = 2πνx satisfies

mx
νx

P
+my

νy

P
=

ℓ

P

which is non-integer and causes cancellation of kicks over one

turn.

If ℓ/P ∈ Z, the resonance is systematic and kicks add

coherently.

• Ideal symmetry (P > 1) protects against certain resonances.

• Real-machine errors reduce effective P → 1, making all

resonances systematic.
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Design strategy

• Choose working point (νx, νy) away from low-order

systematic resonances.

• Use lattice periodicity and symmetry to cancel harmful

resonances.

• Employ harmonic sextupoles/octupoles to compensate

residual driving terms.
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