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3.2.3 Quantum excitation: p.3-13

If synchrotron radiation were a purely classical process, then the beam
emittances would damp to zero. However, it is observed in practice
that the emittances reach non-zero equilibrium values, which depend
on Planck’s constant (h).

1. Radiation is not emitted continuously by a particle in a magnetic
field, but in discrete quanta (photons). The random emission of pho-
tons acts as a ‘noise’ term in the equations of motion for a particle,
which leads to some excitation of betatron (horizontal only) and syn-
chrotron oscillations.

2. Since there is a small opening angle (approximately 1/v), there is
a small, but non-zero lower limit on the vertical emittance as well. In
practice, though, the vertical emittance in storage rings is dominated
by machine errors (such as magnet alignment errors) that introduce
small amounts of vertical dispersion and betatron coupling.
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3.2.3 Quantum excitation: p.3-13

3. The rate of excitation depends on the rate of emission of photons
and on the photon energy distribution, and is not dependent on the
amplitude of the synchrotron or betatron oscillations already being
performed by an electron. Therefore, the emission of photons does
not lead to an exponential increase in the oscillation amplitude, but
rather to a linear increase (as a function of time). This means that at
some particular value of the emittance, the rate of increase is matched
by the rate of damping.
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3.2.3 Quantum excitation (energy): p.3-13

Suppose an electron emits a photon of energy w: this leads to an
instantaneous change in the energy deviation §. Using Eq. (3.17) in
p.3-9, the values of z and § following the photon emission are

apC
/
2 =z P

5ocos(8), & =& — A= dysin(f) — Eﬂ (3)

CUS O

xy

We consider the case with n, ~ ap > 0 (above transition for v > 1).
Hence, particle is moving in CCW direction, and 6 is negative for the
dots in the figure above.
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3.2.3 Quantum excitation (energy): p.3-14

Using,
Oépc

5o cos(h) = apcéf) cos(8'), dpsin(8) — Eﬂ = dypsin(0"),  (4)

Ws Ws 0
the change in the amplitude of the energy oscillation can then be
found from

12 2 u u?
0

Averaging over all particles in the bunch gives the change in the mean
square energy deviation:

/\/\/\

Aoy §'%) — (82)

56 sin?(0")) — (83 sin?(0))
— =/ (6)
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3.2.3 Quantum excitation (energy): p.3-14

Suppose that photons in the energy range u to v+ du are emitted at
a rate N(u).

’LL2 oo .
d{u?) _ /O N (w)u2du. (7)

If we include radiation damping as well as the excitation from pho-
ton emission, the overall rate of change of the mean square energy
deviation is

do? 1 0o 2
) 2 2
— N d S 8
dt ~ 2F3 </o (u)u “>c 0 (8)

where(...)~ indicates an average over the circumference of the ring.
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3.2.3 Quantum excitation (energy): p.3-14

The rate of photon emission N(uw) can be calculated from the syn-
chrotron radiation spectrum using the fact that the energy of a single
photon is ©w = hw [Jackson Chap. 14 (1998), Sands (1970)].

oo E
/O N(uw)u?du = QCQWQ—OPV. (9)
P
Here, Cy is the synchrotron radiation quantum constant:
55 h
32+/3mec
Finally, we find
do? 2 I 2
== 0p?3- 208, (11)
dt 12Tz 12 Tz
where I3 is the third synchrotron radiation integral:
1
I3 = j{—3ds. (12)
o]
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3.2.3 Quantum excitation (energy): p.3-15

A balance between quantum excitation and radiation damping is reached
when

> I3
Jz1?
which is known as the natural energy spread.

> 2 _
o5 = o050 = Cqv

: (13)

In practice, the actual energy spread may be larger than the natural
energy spread, because collective effects (interactions between the
electrons) can cause the energy spread to increase.

Since the ratio of the amplitude of the co-ordinate oscillation to the
amplitude of the energy oscillation is nyc/ws, the natural bunch length
associated with the natural energy spread is
mplc
0,0 = f o50 o< 1\/|1pl- (14)

S
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3.2.3 Quantum excitation (horizontal): p.3-16

photon
emission

closed orbit

0=0

/ closed orbit

S6<0

If a particle with § = 0 is initially following a closed orbit (black line),
then, following the emission of a photon, there is a change in the
closed orbit described by the dispersion (i.e., Axz = n;6 < 0).

Since there is an instantaneous loss of energy, the particle (now with
negative energy deviation, § < 0) is no longer on a closed orbit. As a
result of the photon emission, the particle follows a trajectory (solid
red line) in which it makes betatron oscillations around the new closed
orbit (dashed red line).
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3.2.3 Quantum excitation (horizontal): p.3-16

A full analysis (see, Sands[1970]) leads to the result for the rate of
change of the horizontal emittance:

d 2 I 2
—Ew - Cq’72—5 — —E&q, (15)
dt JrTx Io 1

where I5 is the fifth synchrotron radiation integral given by

Is = f—g’ds, (16)
Id
and the dispersion H-function (sometimes called the ‘curly-H' func-
tion) is
H = yan> + 200, + Ban?. (17)

The natural emittance is
Is
jx]Q.
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3.2.3 Quantum excitation (horizontal): p.3-16

Storage rings for 3rd-generation synchrotron light sources typically
operate with natural emittances of order of a few nm (e.g, ~5.8 nm
for PLS-II).

e Double-bend achromat (DBA):

e Dispersion leak:

For 4th-generation synchrotron light sources (e.g, ~62 pm for Korea-
4GSR),

e Multi-bend achromat (MBA):
e Longitudinal gradient bending magnet (LGBM):

e Reverse bend (RB):
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3.2.3 Quantum excitation (vertical): p.3-17

Without vertical dispersion and betatron coupling, the corresponding
quantity to Is in the vertical direction will be zero, which suggests
that the equilibrium vertical emittance will also be zero.

However, in fact, there is some radiation emitted at (small) angles
above and below the horizontal plane (~ 1/v), which introduces ver-
tical momentum to the particle.

Then, the equilibrium vertical emittance in a ring with no vertical
dispersion or betatron coupling is given by [Raubenheimer (1991)]

~13¢4
Y~ 551,

A
f{fy ds ~ order 0.1 pm < . (19)

7

However, even a small amount of vertical dispersion or betatron cou-
pling, from random alignment errors in the magnets, can lead to
vertical emittances of order of tens of pm. (If the vertical emittance
IS too small, Touschek scattering causes loss of particles. So, tens of
pm is even better.)
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3.3 Natural emittance and lattice design: p.3-17, p.3-18

[General remarks]

It is important to achieve a small value for the natural emittance: this
helps to produce synchrotron radiation with high brightness.

The natural emittance depends on the beam energy (x 42) and the
ratio Ig/jz1>.

Usually, the beam energy is determined by considerations such as the
wavelength range that the synchrotron radiation should cover. With
the curvature of the beam trajectory limited by magnet technology, a
high beam energy is needed to generate short wavelength synchrotron
radiation.

The ratio Is/j.1» is determined entirely by the radius of curvature and
quadrupole field component (in the dipole magnets and IDs), and by
the optical functions (i.e. the Courant—Snyder parameters and the
dispersion).
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3.3.1 FODO Ilattice: p.3-18

The simplest structure for the magnetic lattice in a storage ring is
based on the FODO cell, consisting of alternating focusing (F) and

defocusing (D) quadrupoles, with drift spaces (O) or dipole magnets
between the quadrupoles.
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3.3.1 FODO lattice: p.3-18

Consider a FODO cell in which the quadrupole magnets (as thin
lenses) have focal length +f, and the space between the quadrupoles
is entirely occupied by dipole magnets of length L = pf.

The transfer matrix for a thin quadrupole of focal length f is
1 O
Rguad = < ~1/f 1 ) (20)

T he horizontal part of the transfer matrix through a dipole of bending
angle 6 is

Ccos 6 sin 6
P ) | (21)

Rgipole = ( —%sine COoSs 6

Using the results of Chapter 2, we can calculate the Courant-Snyder
parameters and the dispersion through the FODO cell.
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3.3.1 FODO Ilattice: p.3-18

For example, at the horizontally-focusing quadrupole
4fpsinf(2fcosf + psinh)
r — 07 550 — ’
V164 — [p? — (412 + p?) cos 20]2

(22)

We can then perform the integral Ig, and express it in terms of the
FODO cell parameters. (Warning: Do not attempt it by hand; use

Mathematica or similar tools instead. The algebra is formidable.) The
result can be expressed as a power series in 6:

Is _ (4472 W P 92 + 0(6%) (23)
I 12 252 '

In particular, assuming that p > 2f > L/2, and using approximation
jr ~ 1,

£0,FODO ~ Coy” (QLf> (24)
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3.3.2 Double-bend achromat (DBA): p.3-20

To achieve a smaller emittance than in a FODO ring, we consider a
more sophisticated cell structure such as the double-bend achromat
(DBA). The central region of a DBA cell consists of a pair of dipole
magnets with a quadrupole magnet placed midway between them.

BM FQM BM

(]
Mo
.

s (m)
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3.3.2 Double-bend achromat (DBA): p.3-20

The first dipole magnet generates dispersion.

The strength of the quadrupole is chosen to reverse the gradient of
the dispersion; that is, if the gradient of the dispersion is n; = dng/ds
at the entrance of the quadrupole, then at the exit of the quadrupole
the gradient of the dispersion is —n,.

1 O Ne \ __ N
(—1/f 1)(77&)_(—77;) (25)

In that case, by the symmetry, the second dipole magnet exactly
cancels the dispersion generated by the first dipole magnet. Hence,
in a DBA cell, dispersion is present only in the region between the
dipole magnets.

The cell is completed by additional quadrupoles outside of the pair of
dipole magnets (i.e. in the region with zero dispersion), which can be
used to adjust the Courant—Snyder parameters and phase advance.
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3.3.2 Double-bend achromat (DBA): p.3-20

The benefit of a DBA cell is that the dispersion can be kept much
smaller in the dipole magnets than is the case in a FODO cell. As
a result, Is/jzI> can be smaller than in a FODO cell, for the same
dipole magnet parameters. After some complicated algebra,

Cq 5,3
€ ~ 0> 26
0.DBA ~ =7 (26)

A further benefit of the DBA l|attice style is that it naturally provides
zero-dispersion sections at regular intervals around the ring; these
sections can be made (in principle) of any desired length, and are
ideal locations for IDs.

If an ID is placed at a location with non-zero dispersion, then quantum
excitation in the ID leads to an increase in the natural emittance. If
the dispersion is reasonably small, this may not be a significant effect.

A DBA cell is ideally suited to a (reasonably) low-emittance syn-
chrotron needing a large number of IDs to serve many users.
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3.3.3 Theoretical minimum emittance (TME) lattice: p.3-21

In principle, it is possible to achieve a lower natural emittance than
that in a DBA by allowing non-zero dispersion throughout the cell:
this removes the constraint that n; = n,, = 0 at the entrance of the
first dipole magnet in the cell, and at the exit of the second dipole.

It is then possible to optimise the Courant—Snyder parameters and the
dispersion to minimise the value of Is/j.I> in the cell. The resulting
structure is known as a theoretical minimum emittance (TME) lattice.

A TME cell consists of a single dipole, with quadrupoles to control
the Courant-Snyder parameters and dispersion through the cell.

The natural emittance in a TME storage ring is given by (after com-
plicated algebra)
Cqg 2,3
€ ~; 0°.
0, TME 15 #157

(27)
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3.3.3 Theoretical minimum emittance (TME)lattice: p.3-22

However, the TME cell has a number of drawbacks.

e In particular, dispersion is nonzero throughout a TME lattice, so
we |lose the advantage of the DBA cell in providing locations with
zero (or relatively small) dispersion for IDs.

e Also, nonlinear effects in the beam dynamics can be very strong
in a TME lattice. Correction of chromaticity can be very difficult,
and the dynamic aperture tends to be very small, which leads to
a reduction in beam lifetime.
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3.3.3 Theoretical minimum emittance (TME) lattice: p.3-22

It is possible to improve on the performance offered by a DBA lattice
by adopting some of the features of a TME cell.

We detune the quadrupole between each pair of dipoles and thereby
allow some dispersion to leak in the region in the (nominally) zero-
dispersion regions.

Although dispersion now occurs throughout both dipoles, the integral
of the curly-H function H can actually be reduced in this way, leading
to a reduction in the natural emittance.

While there is then some dispersion at locations of IDs, if the dis-
persion is carefully controlled then the resulting increase of emittance
from quantum excitation in the IDs can be limited.

[Note] Including a (transverse) gradient in the dipole field provides an
extra degree of freedom to reduce the natural emittance, either by
reducing Is or by increasing jg.
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3.3.3 Multi-bend achromat (MBA): p.3-22

Another way to improve on the DBA cell is to include more dipoles
within each cell; the cell is then known as a multi-bend achromat
(MBA).

The advantage of the MBA structure is that it allows the dispersion
to be adjusted to zero at either end of the cell, while the dispersion
and Courant—Snyder parameters are tuned to be close to the TME
conditions in the dipole magnets in the middle of the cell.

The minimum natural emittance in a MBA with M dipoles per cell is
(after complicated algebra)

Cq M 1) 23 2
S A~ 7y 0-. 8
o,MB 1215 (1\4 —1 (28)

Here, 6 is the average bending angle per dipole.
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3.3.3 Multi-bend achromat (MBA): p.3-22

e Keeping the bending angle per dipole constant, the ratio between
the natural emittances of the MBA and DBA is

fomBA _ 1 (M + 1)
gO,DBA 3\M -1 .

(29)

o For M = 2, £0,MBA — €0,DBA: and for M — oo, £0,MBA — 8O,DBA/3 —
€0, TME

e If we keep the ring circumference more or less the same (with a
given energy), then the bending angle per dipole is

0 2
bobea M

£0,MBA NE(M-|-1> <2)3. (31)

€0,DBA 3\M -1 M
For M =7, €O,I\/IBA/50,DBA ~ 32/3082 ~ 1/100.
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