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3.1 Features of synchrotron radiation: p.3-1

Any acceleration of a charged particle leads to disturbances in the
fields around the particle, and hence produces EM radiation. If the
particle is moving relativistically, the radiation is known as synchrotron
radiation.

In an electron storage ring, particles accelerate (by changing their
direction of motion, though not their speed) as they move through
the magnetic fields in the ring.

• In quadrupole (and higher-order multipole) magnets, the fields
seen by particles are generally much weaker than in the dipole
magnets, so the amount of synchrotron radiation produced in
these magnets is (except in some special cases) negligible.

• In a linac, the rate of acceleration is small at ultrarelativistic ve-
locities, so the amount of radiation is also small.
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3.1 Features of synchrotron radiation: p.3-1, p.3-2

The amount of synchrotron radiation produced by accelerating a
charged particle depends on the charge-to-mass ratio of the parti-
cle as well as on the rate of acceleration.

Although synchrotron radiation is produced by protons in storage
rings, since protons have much larger mass than electrons, the amount
of radiation from protons is small, and can usually be ignored.

One of the main effects of synchrotron radiation is to lead to the beam
reaching equilibrium emittances, determined by the beam energy and
the arrangement of magnets.
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3.1.1 Radiation power spectrum: p.3-2

A (ultra-relativistic) particle (β ≈ 1) with energy E following a curved
trajectory with radius ρ emits radiation with power

Pγ =
Cγ

2π

cE4

ρ2
=

Cγ

2π
q2c3E2B2. (1)

Cγ is a constant given by

Cγ =
q2

3ϵ0(mc2)4
, (2)

where q is the electric charge of the particle, m is the (rest) mass of
the particle, and ϵ0 is the permittivity of free space. For electrons,
|q| = e = 1.602× 10−19 C,

Cγ = 8.846× 10−5 m GeV−3. (3)
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3.1.1 Radiation power spectrum: p.3-2, p.3-3

The synchrotron radiation from a charged particle in a dipole mag-
net extends over a broad range of wavelengths: typically significant
amounts of power in the part of the EM spectrum ranging from the
infra-red up to the ultra-violet or soft x-ray regions.

The peak in the radiation spectrum occurs close to the critical fre-
quency given by

ωc =
3c

2ρ
γ3. (4)
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3.1.1 Radiation power spectrum: p.3-3, p.3-4

Above ωc, the radiation power fall rapidly with increasing frequency,
and there is also a lower energy tail, as well as some fraction of higher
energy photons.

For efficient production of hard x-ray (above 5–10 keV, below 0.2–0.1
nm wavelength), which is important for a number of scientific fields,
insertion devices (undulators and wigglers) can be used.

The critical energy is Ec = ℏωc = ℏ2πcλc
.
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3.1.1 Radiation power spectrum: p.3-4

The synchrotron radiation from a single particle is emitted in a narrow
cone around the instantaneous direction of motion of the particle. The
opening angle of the radiation is roughly 1/γ.

In a dipole magnet, particles emit radiation along the entire length
of the magnet, and since the bending angle of a dipole in a storage
ring is typically large compared to 1/γ, the radiation takes the form
of a ‘fan’ with narrow vertical divergence, but horizontal divergence
roughly equal to the dipole bending angle (of order 10◦).
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3.1.1 Radiation power spectrum: p.3-4

The third-generation light sources are designed to optimise the radi-
ation from insertion devices.

• Wigglers are designed so that the amplitude of the trajectory
oscillation around the axis of the device is large. The radiation
power spectrum from a wiggler is then similar to that from a
dipole magnet, and the horizontal divergence is dominated by the
change in angle of the beam trajectory along the device. (cf.,
damping wiggler)

• In an undulator, however, the amplitude of the trajectory oscilla-
tion around the axis is much smaller. This leads to interference
effects between the radiation produced in successive periods of
the array of magnets, and results in a radiation power spectrum
dominated by a series of sharp spikes (essentially, a line spectrum).
The angular divergence of undulator radiation is also dominated
by the intrinsic opening angle of radiation from individual particles
(of order 1/γ) rather than by the trajectory of the beam.
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3.1.1 Radiation power spectrum: p.3-4

A detailed analysis of radiation emission in an undulator leads to the
undulator equation giving the wavelengths λn of the spectral lines,

λn =
λu

2nγ2

(
1+

K2

2
+ θ2γ2

)
, (5)

• λu is the undulator period.

• θ is the angle with respect to the axis of the undulator at which the
radiation is observed. θ = 0 corresponds to the forward direction.

• n is an integer corresponding to the different harmonics (lines)
in the radiation spectrum. For θ = 0, only odd harmonics are
observed.

• K is deflection parameter that characterises the amplitude of the
oscillation of the trajectory around the axis of the insertion device.
(K > 1 for a wiggler, K < 1 for an undulator)
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3.1.2 Brightness: p.3-4, p.3-5

Although the radiation power Pγ is a significant quantity, a more
important figure of merit is often the radiation beam brightness.

The brightness is defined as the amount of radiation in a given fre-
quency range, per unit area in phase space.

The area of phase space occupied by electrons is quantified by the
emittance, which is a constant as the beam moves around the ring.

The photon beam brightness is therefore independent of the location
of the source of the radiation in the storage ring.

Since the radiation from each electron is emitted in a narrow cone
around the instantaneous direction of motion of the electron, the
brightness is also a measure of the power per unit phase space area,
and is a constant as the radiation is transported from the storage ring
to an experimental area.

Synchrotron radiation 9 Part 1



3.1.2 Brightness: p.3-5

The brightness (or brilliance) can be calculated from the formula:

B =
Φγ

4π2ΣxΣx′ΣyΣy′(dω/ω)
. (6)

• Φγ is the photon flux (number of photons produced per second)
at angular frequency ω.

• dω/ω is the bandwidth (typically 0.1%).

• Σx,y and Σx′,y′ are given by summing in quadrature the elec-
tron/photon beam sizes, and beam divergences.

Σx,y =
√
σ2x,y + σ2r , Σx′,y′ =

√
σ2x′,y′ + σ2r′ (7)

• The intrinsic photon-beam size and divergence by an undulator of
length L and emitting photons at a wavelength λ:

σr =
1

2π

√
λL

2
, σr′ =

√
λ

2L
, σrσr′ =

λ

4π
= ϵr. (8)
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3.1.3 Opening angle of the radiation beam: p.3-5

It is often helpful to have a beam with a small divergence for higher in-
tensity of the radiation in experiments. For a single relativistic charged
particle, divergence is σr′ ∼ 1/γ.

In a third-generation synchrotron light source, a typical electron en-
ergy is 3 GeV, so γ is of order 6000; the synchrotron radiation can
then have an opening angle of a fraction of a mrad, i.e. of order 0.01◦.
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3.1.3 Opening angle of the radiation beam: p.3-6

Consider an ID that produces a magnetic field varying sinusoidally
along the length of the device, with amplitude B0 and period λu.

Electrons will follow a sinusoidal trajectory through the device with
the peak angular deflection K/γ.

K =
eB0

mc

λu

2π
≈ 93.36 B0[T] λu[m] (9)

• In an undulator, K < 1; the divergence of the radiation beam will
then be dominated by the intrinsic opening angle of the radiation
(1/γ) from an individual particle.

• In a wiggler, however, K > 1 and the divergence of the radia-
tion beam will be dominated by the angular deflection of particle
trajectories through the wiggler.
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3.1.4 Polarisation: p.3-6

Synchrotron radiation from a dipole magnet bending a beam in the
horizontal plane is horizontally polarised (i.e. the electric field oscil-
lates in the horizontal plane) when observed in the horizontal plane.

Radiation emitted at (small) angles above or below the horizontal
plane has a vertical component of polarisation in addition to the
horizontal component.
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3.1.4 Polarisation: p.3-7

IDs in which the field polarity alternates along the length of the device
produce radiation with similar polarisation properties to dipoles.

More sophisticated IDs can produce elliptical polarisation, in addition
to planar polarisation. This can be achieved by moving the magnetic
poles relative to one another longitudinally [Advanced Planar Polar-
ized Light Emitting (APPLE) type].
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3.2 Radiation damping and quantum excitation: p.3-7, p.3-8

Synchrotron radiation leads to the horizontal, vertical, and longitudi-
nal emittances of a beam in an electron storage ring reaching equi-
librium values determined by the beam energy and the design of the
magnetic lattice.

• The energy loss from synchrotron radiation leads to an expo-
nential decrease (damping) of the amplitudes of synchrotron and
betatron oscillations of any electron in a storage ring.

• However, the quantum nature of the radiation prevents the am-
plitudes damping to zero: the random emission of photons results
in some excitation of synchrotron and betatron oscillations.

The equilibrium emittances are determined by the balance between
radiation damping and quantum excitation.
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3.2.1 Damping of synchrotron oscillations: p.3-8

The combined effects of the RF cavities in a storage ring and phase
slip (from dispersion in the dipole magnets) led to particles performing
synchrotron oscillations. Let us write down the equations of motion
for the longitudinal coordinate z and the energy deviation δ = ∆E/E0
of an electron in a storage ring.

[Energy] On each turn, the electron acquires energy from the RF
cavities (VRF, ωRF), and loses energy through synchrotron radiation.
Averaging the energy gain and loss over a single turn, the rate of
change of the energy deviation can be written

dδ

dt
=

qVRF

E0T0
sin

(
ϕs −

ωRFz

c

)
−

U

E0T0
, (10)

where E0 is the reference energy, T0 is the revolution period, and U

is the total energy lost through synchrotron radiation.

The synchronous phase ϕs is defined so that the energy gained by the
reference particle (z = 0) in an RF cavity is exactly matched by the
energy U lost over one turn (hence δ = 0).
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3.2.1 Damping of synchrotron oscillations: p.3-8

In other words,

qVRF sin(ϕs) = U0, U ≈ U0 + E0δ
dU

dE

∣∣∣∣∣
E=E0

. (11)

[Coordinate] The rate of change of the longitudinal co-ordinate is
related to the energy deviation by the phase slip factor ηp. Again
averaging over a single turn, the rate of change of the longitudinal
co-ordinate is

dz

dt
= −ηpcδ. (12)

If we assume that z is small, so that ωRFz/c ≪ 1, we can make the
approximation

sin
(
ϕs −

ωRFz

c

)
≈ sin(ϕs)− cos(ϕs)

ωRFz

c
. (13)
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3.2.1 Damping of synchrotron oscillations: p.3-9

The equations of motion are then linear in the variables z and δ,
and can be combined to give the following equation for the energy
deviation:

d2δ

dt2
+2αE

dδ

dt
+ ω2

s δ = 0. (14)

The synchrotron frequency is ωs = 2πνs/T0, with νs is the synchrotron
tune (the number of synchrotron oscillations completed per turn of
the ring). The constant αE is given by the change of energy lost
through synchrotron radiation with respect to a change in the energy
of the particle, evaluated at the reference energy:

αE =
1

2T0

dU

dE

∣∣∣∣∣
E=E0

. (15)

The equation of motion for the energy deviation is the equation for a
damped harmonic oscillator, with angular frequency ωs and damping
time τz = 1/αE.
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3.2.1 Damping of synchrotron oscillations: p.3-9

The solution to the equation of motion can be written

δ(t) = δ0e
−αEt sin(ωst+ θ0), (16)

where δ0 is the initial amplitude, and θ0 is the initial phase of the
oscillation.

We find that the longitudinal coordinate z obeys a similar equation
of motion:

z(t) =
ηpc

ωs
δ0e

−αEt cos(ωst+ θ0), (17)

The main significance of these results is that synchrotron radiation
leads to damping (exponential decay of the amplitude) of synchrotron
oscillations.

To complete the description of the motion, however, we need to find
an expression for the damping constant αE in terms of the parameters
of the storage ring and the electron beam.
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3.2.1 Damping of synchrotron oscillations: p.3-9

The energy loss per turn is found by integrating the radiation power
over a complete turn of the ring, taking into account the depen-
dence of the revolution period on the energy deviation (because of
the presence of dispersion ηx).

First, calculate the energy loss per turn for a (ultra-relativistic) particle
with zero energy deviation:

U0 =
∮

Pγ(E0)dt =
∮

Pγ(E0)
ds

c
=

Cγ

2π
E4
0

∮ 1

ρ2
ds =

Cγ

2π
E4
0I2, (18)

where I2 is the second synchrotron radiation integral. (we may elimi-
nate Cγ in terms of I2)

In an isomagnetic ring, where the radius of curvature of the reference
trajectory is constant around the entire circumference,

I2 =
∮ 1

ρ2
ds =

2π

ρ
. (19)
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3.2.1 Damping of synchrotron oscillations: p.3-9

Second, calculate the energy loss per turn for a (ultra-relativistic)
particle with zero betatron amplitude but with an offset x = ηxδ:

U =
∮

Pγ(E)dt =
∮

Pγ(E)
dC

c
=
∮

Pγ(E)

(
1+

ηx

ρ
δ

)
ds

c
. (20)

We find (after some algebra)

dU

dE

∣∣∣∣∣
E=E0

= jz
U0

E0
, (21)

where jz is the longitudinal damping partition number:

jz = 2+
I4
I2

. (22)

I4 is the fourth synchrotron radiation integral:

I4 =
∮

ηx

ρ

(
1

ρ2
+2k1

)
ds, (23)

where k1 = (q/P0)(∂By/∂x) is the quadrupole gradient in the dipole
field (i.e., where ρ is finite). It should be mentioned that ρ = |L|/θ can
have opposite signs when the bending is in the reversed direction.
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3.2.1 Damping of synchrotron oscillations: p.3-10

Finally, we can write the longitudinal damping time:

τz =
1

αE
=

1
1

2T0
dU
dE |E=E0

=
2

jz

E0

U0
T0. (24)

Note that the focusing strength only affects the value of I4 if the
quadrupole field component appears in a dipole magnet (e.g., com-
bined function, edge focusing):

B = B0 + x
∂By

∂x
. (25)

If the dipole magnets in a storage ring have no quadrupole component
(i.e. the field is uniform, and does not vary with x or y), then I4 ≪ I2,
and jz ≈ 2.
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3.2.2 Damping of betatron oscillations: p.3-10

In our analysis of the effects of synchrotron radiation on synchrotron
motion in a storage ring, we were able to average the radiation energy
loss over a complete revolution of a particle around the ring: this was
a valid approach, because in most cases the synchrotron tune is small,
νs ≪ 1, so that the changes in the co-ordinate z and energy deviation
δ are small over one turn.

In the case of betatron oscillations, however, particles will usually
complete many oscillations over a single turn of the ring, so we cannot
assume that we can average the effects of synchrotron radiation over
one turn.
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3.2.2 Damping of betatron oscillations: p.3-10, p.3-11

Suppose that a particle emits some synchrotron radiation as it passes
through a dipole magnet. The energy and momentum of the particle
will fall as a result.

Since the radiation is emitted (for ultrarelativistic particles) along
the instantaneous direction of motion of the particle, the emission
of synchrotron radiation will not change the direction in which the
particle is moving (unless RF cavity is used).
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3.2.2 Damping of betatron oscillations (vertical): p.3-10, p.3-11

If the change in momentum is ∆P > 0 and the particle initially has a
momentum close to the reference momentum P0, then each compo-
nent of the momentum vector will scale by a factor (approximately)
1−∆P/P0.

P −∆P ≈ P

(
1−

∆P

P0

)
. (26)

In particular, the vertical momentum will undergo a change ∆py =

py
(
−∆P

P0

)
, which leads to a change in the vertical betatron action Jy.

Jy =
1

2

(
γyy

2 +2αyypy + βyp
2
y

)
, ∆Jy = −

(
αyypy + βyp

2
y

)∆P

P0
. (27)

Averaging over all particles in the beam (assumed uniformly dis-
tributed in betatron phase angle) we find

⟨∆Jy⟩ = −εy
∆P

P0
, (28)

where εy = ⟨Jy⟩ is the vertical emittance of the beam. (see p. 2-20)
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3.2.2 Damping of betatron oscillations (vertical): p.3-11

If the total change in betatron action over a single turn of the ring
is small, we can find the rate of change of the betatron action by
averaging the changes over one revolution: (though the changes in y

and py can be large due to many betatron oscillations)

dεy

dt
= −

εy

T0

∮ ∆P

P0
≈ −

εy

T0

∮ ∆E

E0
= −

U0

E0T0
εy = −

2

τy
εy. (29)

Here, we define the vertical damping time

τy =
2

jy

E0

U0
T0 = 2

E0

U0
T0. (30)

The vertical emittance falls exponentially, with damping time τy/2:

εy(t) = εy(0)e
−2t/τy. (31)

The factor 2 in the definition of the damping time is a matter of
convention, jy = 1 is introduced for formal completeness.
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3.2.2 Damping of betatron oscillations (vertical): p.3-11

The energy lost by particles through synchrotron radiation is replaced
in electron storage rings by RF cavities.

Since RF cavities are generally designed so that the accelerating field
is parallel to the reference trajectory, although the momentum of a
particle may increase (back to the original reference value) as it passes
through the cavity, only the longitudinal component will change, and
the transverse components will remain the same.

The horizontal and vertical betatron actions of a particle passing
through an RF cavity will therefore be unchanged by the fields in the
cavity, and the cavity will have no effect on the horizontal or vertical
emittance.

[Note] If the reference momentum P0 is increased by RF as in linac,
the scaled vertical momentum of a particle, py = Py/P0, is decreased
(adiabatic damping). In a storage ring, if the beam is held at a fixed
energy, there is no adiabatic damping.
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3.2.2 Damping of betatron oscillations (horizontal): p.3-12

Calculating the horizontal damping time is more complicated than
calculating the vertical damping time, for three reasons.

1. As a particle emits EM radiation, there will be a (classical or
continuous) change in the closed orbit about which the trajectory
of the particle oscillates (effects of dispersion). This results in
a change in the betatron amplitude, in addition to the change
resulting directly from the change in horizontal momentum of the
particle.

2. Where the reference trajectory is curved, the path length taken
by a particle depends on the horizontal co-ordinate.

3. Dipole magnets are sometimes constructed with a quadrupole field
component, so the field strength seen by a particle in a dipole
magnet depends on the horizontal co-ordinate of the particle.
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3.2.2 Damping of betatron oscillations (horizontal): p.3-12

Taking the relevant effects into account, we nonetheless find that
the horizontal emittance damps exponentially, in the same way as the
longitudinal and vertical emittances:

εx(t) = εx(0)e
−2t/τx. (32)

The horizontal damping time τx, however, has to take account of 1)
the effects of dispersion, 2) the curvature of the reference trajectory,
and 3) the possible presence of a quadrupole field component in the
dipole magnets:

τx =
2

jx

E0

U0
T0, (33)

where jx is the horizontal damping partition number

jx = 1−
I4
I2

. (34)
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3.2.2 Damping of betatron oscillations (horizontal): p.3-12

If the dipole magnets have no quadrupole field component, then I4 ≪
I2 and hence jx ≈ 1.

Inclusion of a quadrupole field component in the dipole magnets
(through I4), however, makes it possible to ‘shift’ the radiation damp-
ing between the longitudinal and horizontal motion.

For a planar storage ring with (without vertical dispersion),

jx + jy + jz = 4,
1

τx
+

1

τy
+

1

τz
= const. (35)

The sum of the damping partition number is independent of the lattice
design (i.e., I2, I4).

The Robinson damping theorem states that although it is possible
to shift the balance of the radiation damping provided between the
different degrees of freedom, the overall rate of damping is fixed by
the beam energy (E0) and the rate of energy loss (U0/T0).
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