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4. Many Particle Dynamics

In this Lecture we introduce a method to analyze particle dynamics in circular 
accelerators. The method is based on the theory developed by Courant and Snyder 
in the 1950s and has been popularized in accelerator community.
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To study behavior of a particle beam (i.e. collection of particles) under the influence of 
EM fields, we may follow each particle’s trajectory. However, a beam usually consists  of 
many particles (e.g. 109 - 1010), each with different initial conditions.  It does not make 
sense to  follow each  particle, which is too cumbersome or impossible even with a 
computer. We therefore need to devise some methods.  

Many particles

One such method is to observe a beam in phase space.
 Each particle is represented by a single point in 6-dimensional phase space 

(𝑥𝑥, 𝑝𝑝𝑥𝑥,𝑦𝑦, 𝑝𝑝𝑦𝑦, 𝑧𝑧, 𝑝𝑝𝑧𝑧).
 In beam physics, except some special cases, we can treat the motion independently in 

different degree of freedom. 
 The location of a particle in phase space can then be defined by 3 pairs of conjugate 

variables, 𝑥𝑥, 𝑝𝑝𝑥𝑥 , 𝑦𝑦, 𝑝𝑝𝑦𝑦 , (𝑧𝑧, 𝑝𝑝𝑧𝑧).
 At least in existing accelerators, coupling of motions between different degrees of 

freedom is usually small and can be treated as a perturbation.
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To describe particle beams in phase space we use two conjugate variables such 
as

𝑥𝑥, 𝑝𝑝𝑥𝑥 , 𝑦𝑦, 𝑝𝑝𝑦𝑦 , (𝑧𝑧, 𝑝𝑝𝑧𝑧)

Instead of (𝑧𝑧, 𝑝𝑝𝑧𝑧) it is customary to use 

−𝑡𝑡,𝐸𝐸 or 𝜙𝜙,𝐸𝐸 or −Δ𝑡𝑡,Δ𝐸𝐸 or −𝑡𝑡,
Δ𝐸𝐸
𝐸𝐸0

or 𝜙𝜙,
Δ𝐸𝐸
𝐸𝐸0

or 𝑠𝑠 − 𝑣𝑣𝑣𝑣, 𝛿𝛿 = 𝑝𝑝−𝑝𝑝0
𝑝𝑝0

or 𝑠𝑠
𝛽𝛽0
− 𝑐𝑐𝑐𝑐 = −𝑐𝑐(𝑡𝑡 − 𝑡𝑡0), 𝑝𝑝𝑡𝑡 = 𝐸𝐸

𝑐𝑐𝑝𝑝0
− 1

𝛽𝛽0

Longitudinal oscillation is much smaller (slower) than the transverse oscillation and 
therefore it is usually treated separately.

where Δ𝑡𝑡 = 𝑡𝑡 − 𝑡𝑡0(𝑠𝑠), Δ𝐸𝐸 = 𝐸𝐸 − 𝐸𝐸0.

etc.
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𝑥𝑥, 𝑥𝑥𝑥 , (𝑦𝑦,𝑦𝑦′) phase spaces

sin 𝑥𝑥𝑥 =
𝑝𝑝𝑥𝑥
𝑝𝑝0

Momentum 𝑝𝑝𝑥𝑥 ≈ 𝑝𝑝0 sin 𝑥𝑥′

We use paraxial beam optics meaning  𝑥𝑥𝑥 ≪ 1 and 𝑝𝑝𝑥𝑥 ≪ 𝑝𝑝0. Then 𝑝𝑝𝑥𝑥 = 𝑝𝑝0𝑥𝑥′ ≈ 𝑝𝑝0 sin 𝑥𝑥′ .

For beamlines with constant momentum/energy it is customary to use 𝑥𝑥, 𝑥𝑥𝑥 , 𝑦𝑦,𝑦𝑦’ .

Note that 𝑥𝑥, 𝑥𝑥′ is not a set of canonically conjugate variables, but to a good (paraxial) 
approximation they can be considered as a set of phase-space coordinates. 

𝑥𝑥𝑥

𝑝𝑝0

𝑥𝑥

𝑝𝑝𝑥𝑥

𝑝𝑝𝑧𝑧

𝑠𝑠

𝑥𝑥

𝑥𝑥𝑥
𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖′

𝑚𝑚
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑝𝑝𝑥𝑥 → 𝑚𝑚
𝑑𝑑𝑑𝑑
𝑑𝑑𝑠𝑠/𝑣𝑣

= 𝑝𝑝𝑥𝑥 →
𝑑𝑑𝑑𝑑
𝑑𝑑𝑠𝑠

≡ 𝑥𝑥𝑥 ≈
𝑝𝑝𝑥𝑥
𝑝𝑝0

𝑝𝑝0 = 𝑚𝑚𝑚𝑚

Use of 𝑥𝑥, 𝑝𝑝𝑥𝑥 , 𝑦𝑦, 𝑝𝑝𝑦𝑦 is not convenient because the momenta are very small numbers in 
general. 
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Many particles

𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖′

𝑥𝑥

𝑥𝑥′

Randomly distributed particles can be enclosed by an ellipse, the phase-space ellipse. 
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Phase-space area of a beam
To describe particle dynamics in phase space, we begin with some analytical geometry 
dealing with properties of an ellipse. Later we shall see that an ellipse well suits to describe 
particle beams.
General equation for an ellipse can be written in the form of a bi-linear product 

𝑋𝑋𝑇𝑇Σ−1𝑋𝑋 = 1 𝑋𝑋𝑇𝑇 = (𝑥𝑥, 𝑥𝑥′,𝑦𝑦,𝑦𝑦′, 𝑧𝑧, 𝑝𝑝𝑡𝑡,⋯ )

Volume of 𝑛𝑛 -dimensional ellipsoid is given by (from analytic geometry) 

𝑉𝑉𝑛𝑛 =
𝜋𝜋𝑛𝑛/2

Γ 1 + 𝑛𝑛/2 det(Σ)

where Γ is the gamma function.

where 𝑋𝑋 is a column matrix (or vector) consisting of phase-space coordinates (and others 
such as the spin) and Σ is a matrix describing the ellipse, which we call the “beam (sigma) 
matrix” or “beam-envelope matrix”  as will be obvious soon.

(1)

(2) 𝑠𝑠 : reference particle’s long. position

The beam (sigma) matrix is not to be confused with the transfer matrix or map that we 
have considered before.
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Beam (sigma) matrix

In two-dimensional (phase) space, 𝑛𝑛 = 2, and therefore with 

𝑉𝑉2 = 𝜋𝜋 det(Σ) = 𝜋𝜋 𝜎𝜎11𝜎𝜎22 − 𝜎𝜎122 ≡ 𝜋𝜋𝜋𝜋 (𝜎𝜎12= 𝜎𝜎21)

where 𝜋𝜋𝜋𝜋 is the area of the phase-space ellipse. Here 𝜖𝜖 is called the beam emittance.

From 𝑋𝑋𝑇𝑇Σ−1𝑋𝑋 = 1 we get with Σ−1 =
1

det(Σ)
𝜎𝜎22 −𝜎𝜎12
−𝜎𝜎21 𝜎𝜎11

the equation of ellipse

𝜎𝜎22𝑥𝑥2 − 2𝜎𝜎12 𝑥𝑥𝑥𝑥′ + 𝜎𝜎11𝑥𝑥′2 = det Σ = 𝜖𝜖2

Σ =
𝜎𝜎11 𝜎𝜎12
𝜎𝜎21 𝜎𝜎22 ≡ 𝜖𝜖 𝛽𝛽 −𝛼𝛼

−𝛼𝛼 𝛾𝛾

Thus the beam emittance is the phase-space area occupied by a beam divided by 𝜋𝜋.

(3)

(4)

(5)

(6)

Σ =
𝜎𝜎11 𝜎𝜎12
𝜎𝜎21 𝜎𝜎22

𝜎𝜎21 = 𝜎𝜎12)(Again note that

Σ−1 =
1
𝜖𝜖2

𝜖𝜖𝜖𝜖 𝜖𝜖𝜖𝜖
𝜖𝜖𝜖𝜖 𝜖𝜖𝛽𝛽

=
1
𝜖𝜖
𝛾𝛾 𝛼𝛼
𝛼𝛼 𝛽𝛽

(7)𝛾𝛾𝑥𝑥2 + 2𝛼𝛼𝑥𝑥𝑥𝑥′ + 𝛽𝛽𝑥𝑥′2 = 𝜖𝜖

det(Σ) = 𝜖𝜖

In terms of ellipse parameters (see the Figure in the next page) the beam (sigma) matrix 
is defined in the form:

Then Eq. (5) becomes the well-known Courant-Snyder invariant: 

𝑋𝑋𝑇𝑇 = (𝑥𝑥, 𝑥𝑥′)

To make our discussion easy and transparent, let’s consider two-dimensional case.
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Propagation of the beam (sigma) matrix
To find the propagation of the beam matrix along the beam transport line, let’s begin with 
the equation of ellipse given by Eq. (1) at a longitudinal position 𝑧𝑧1:

𝑋𝑋1𝑇𝑇Σ1−1𝑋𝑋1 = 1

At 𝑧𝑧2 it is written as

𝑋𝑋2𝑇𝑇Σ2−1𝑋𝑋2 = 1

If we know the transfer matrix 𝑀𝑀 between 𝑧𝑧1 and 𝑧𝑧2, then 𝑋𝑋2 = 𝑀𝑀𝑋𝑋1 or 𝑋𝑋1 = 𝑀𝑀−1𝑋𝑋2. 

1 = 𝑋𝑋2𝑇𝑇Σ2−1𝑋𝑋2 = 𝑋𝑋1𝑇𝑇𝑀𝑀𝑇𝑇Σ2−1𝑀𝑀𝑋𝑋1 = 𝑋𝑋1𝑇𝑇Σ1−1𝑋𝑋1
Then we find the propagation of the beam matrix at two different places:

Σ1−1 = 𝑀𝑀𝑇𝑇Σ2−1𝑀𝑀 or Σ2 = 𝑀𝑀Σ1𝑀𝑀𝑇𝑇

We note by taking the determinants on both sides of Eq. (8)
det(Σ2) = det(Σ1)

which indicates the preservation of the phase-space area (or volume). 

From these, we can relate Σ1 and Σ2

(8)

Thus if we know the beam matrix at some position 𝑧𝑧1 and if we know the transfer matrix 
between 𝑧𝑧1 and 𝑧𝑧2, then we can find the beam matrix at 𝑧𝑧2 using Eq. (8).
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Phase space ellipse
The parameters 𝛼𝛼,𝛽𝛽, 𝛾𝛾 in Eq. (6) are defined by an ellipse as

Note: These 𝛽𝛽, 𝛾𝛾 are different from the usual 𝛽𝛽, 𝛾𝛾 in relativity. We shall introduce them in 
more formal way soon. 

We need beam dynamics studies to get some insight of these parameters. This is the 
subject of the Courant-Snyder theory.

𝛽𝛽,𝛼𝛼, 𝛾𝛾 are called Twiss parameters or Courant-Snyder parameters in the literature, and  
Eq. (7) is called as the Courant-Snyder invariant.

So beam emittance is an invariant quantity if the beam does not accelerate (or decelerate).
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In general, linearized equation of motion in circular accelerator for an on-momentum 
particle can be written as

Courant-Snyder parameterization: Betatron functions

𝑑𝑑2𝑥𝑥(𝑠𝑠)
𝑑𝑑𝑠𝑠2

+ 𝑘𝑘(𝑠𝑠)𝑥𝑥(𝑠𝑠) = 0

Periodic condition: 𝑘𝑘(𝑠𝑠 + 𝐶𝐶) = 𝑘𝑘(𝑠𝑠) 𝐶𝐶: circumference or cell length

If 𝑘𝑘 = constant, the solution would be 𝑥𝑥 𝑠𝑠 = 𝑐𝑐1cos 𝑘𝑘𝑠𝑠 + 𝜙𝜙 , with 𝑐𝑐1 and 𝜙𝜙 being 
constant. But in Eq. (9) 𝑘𝑘 is a function of 𝑠𝑠.  So we try “variation of parameters” method. 

Inserting this into the Hill’s eq. (9) and setting coefficients of sine and cosine terms to 
be separately zero, we get (omitting details)

An equation of this form is called the Hill’s equation; a linear second-order differential 
equation with periodic boundary conditions.

(9)

(10)𝑥𝑥𝑖𝑖(𝑠𝑠) = ⏟𝑎𝑎𝑖𝑖
const

𝛽𝛽(𝑠𝑠) cos[𝜓𝜓(𝑠𝑠) + �𝜙𝜙𝑖𝑖
const

]

Let’s assume a solution for the 𝑖𝑖𝑡𝑡𝑡 particle of the form 

c. f. ) 𝑥𝑥 𝑠𝑠 = 2𝛽𝛽𝑥𝑥 𝑠𝑠 𝐽𝐽𝑥𝑥 cos 𝜙𝜙𝑥𝑥(𝑠𝑠)



NUCE719G, 2025

Dane & Department of Physics, POSTECH moohyun@postech.ac.kr

In
te

rm
ed

ia
te

Be
am

 P
hy

sic
s

11

𝑑𝑑2

𝑑𝑑𝑠𝑠2 𝛽𝛽(𝑠𝑠) + 𝑘𝑘 𝑠𝑠 𝛽𝛽 𝑠𝑠 − 𝛽𝛽(𝑠𝑠)−3/2 = 0

2) Betatron phase

𝜓𝜓′ 𝑠𝑠 =
𝑑𝑑𝜓𝜓
𝑑𝑑𝑑𝑑

=
1

𝛽𝛽(𝑠𝑠)
→ 𝜓𝜓(𝑠𝑠) = �

0

𝑠𝑠 1
𝛽𝛽(𝜍𝜍)

𝑑𝑑𝑑𝑑

1) Equation for betatron function

(11)

(13)

1
2𝛽𝛽

𝑑𝑑2𝛽𝛽
𝑑𝑑𝑠𝑠2 −

1
4

𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

2

+ 𝛽𝛽2𝑘𝑘 = 1

or equivalently

(12)

 Two different betatron functions are defined: one for horizontal (𝑥𝑥) and the other for 
vertical (𝑦𝑦) plane.

 For particular set of initial values of the betatron function, there is only one solution 
per plane for betatron function.

 For circular lattices, the initial value is equal to the final value at the end of one turn or 
one cell (i.e. periodic condition).

 The value of betatron function by definition is real and always positive.
 The unit of betatron function is meter.
 The constants multiplied by the square root of the betatron function [e.g. 𝑎𝑎𝑖𝑖 in Eq. 

(10)] can be positive or negative to represent a particle’s trajectory.
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Betatron oscillations

M. Sands
SLAC-121
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𝑥𝑥𝑖𝑖(𝑠𝑠) = 𝑎𝑎𝑖𝑖 𝛽𝛽(𝑠𝑠) cos[𝜓𝜓(𝑠𝑠) + 𝜙𝜙𝑖𝑖]

Let’s go back to Eq. (10) 

𝑥𝑥𝑖𝑖′(𝑠𝑠) = 𝑎𝑎𝑖𝑖
𝛽𝛽𝛽

2 𝛽𝛽
cos[𝜓𝜓(𝑠𝑠) + 𝜙𝜙𝑖𝑖] − 𝑎𝑎𝑖𝑖 𝛽𝛽 𝜓𝜓𝜓sin[𝜓𝜓(𝑠𝑠) + 𝜙𝜙𝑖𝑖]

Taking derivatives with respect to 𝑠𝑠 we get

(10)

(14)

Eliminating the phase [𝜓𝜓(𝑠𝑠) + 𝜙𝜙𝑖𝑖] from Eqs. (10) and (14) and defining 𝛾𝛾(𝑠𝑠) =
1 + 𝛼𝛼2(𝑠𝑠)
𝛽𝛽(𝑠𝑠)

𝛽𝛽(𝑠𝑠)𝑥𝑥𝑖𝑖′2 + 2𝛼𝛼(𝑠𝑠)𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖′ + 𝛾𝛾(𝑠𝑠)𝑥𝑥𝑖𝑖2 = 𝑎𝑎𝑖𝑖2
we get a similar from as Eq. (7):

eq. of ellipse

During betatron oscillation, each particle moves on its own ellipse with area 𝐴𝐴𝑖𝑖= 𝜋𝜋𝑎𝑎𝑖𝑖2
in phase space.  Particle with maximum amplitude �𝑎𝑎 defines  whole beam with beam 
emittance 𝜀𝜀𝑥𝑥 = �𝑎𝑎2

called Courant-Snyder invariant

Let 𝛼𝛼 𝑠𝑠 = −1
2
𝛽𝛽′ 𝑠𝑠 and from 𝜓𝜓𝜓(𝑠𝑠) = 1

𝛽𝛽(𝑠𝑠)

𝑥𝑥𝑖𝑖′(𝑠𝑠) = −𝑎𝑎𝑖𝑖
1
𝛽𝛽
𝛼𝛼(𝑠𝑠) cos(𝜓𝜓(𝑠𝑠) + 𝜙𝜙𝑖𝑖) − sin[𝜓𝜓(𝑠𝑠) + 𝜙𝜙𝑖𝑖]

we write

(15)
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Motion in phase space

𝑢𝑢 = 𝑥𝑥 or 𝑦𝑦

𝛽𝛽,𝛼𝛼, 𝛾𝛾 are also called Twiss parameters. 

For bell shaped or Gaussian distribution of particles, we define the beam emittance by 

𝜖𝜖𝑢𝑢 = 𝑢𝑢2

𝛽𝛽𝑢𝑢
= 1

2
𝑎𝑎𝑖𝑖2 (16)

𝐴𝐴 = 𝜋𝜋𝜖𝜖 𝜖𝜖𝛽𝛽

𝑥𝑥

𝑥𝑥′

𝜖𝜖𝛾𝛾

Individual particles 𝑎𝑎𝑖𝑖
𝛼𝛼

𝜖𝜖
𝛽𝛽

𝑎𝑎𝑖𝑖2 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑎𝑎𝑖𝑖2

𝑁𝑁 : number of particles 
phase space ellipse
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Beam envelope
Expression for single particle trajectory

𝑥𝑥𝑖𝑖 𝑠𝑠 = 𝑎𝑎𝑖𝑖 𝛽𝛽(𝑠𝑠)cos 𝜓𝜓 𝑠𝑠 + 𝜙𝜙𝑖𝑖

can be used to define the beam envelope.

Look for all particles with maximum amplitude �𝑎𝑎𝑖𝑖 and choose those with a phase such that
cos 𝜓𝜓 𝑠𝑠 + 𝜙𝜙𝑖𝑖 = 1 and find the beam envelope

𝑅𝑅𝑥𝑥,𝑦𝑦 𝑠𝑠 = ± �𝑎𝑎𝑥𝑥,𝑦𝑦 𝛽𝛽(𝑠𝑠)

Note: We have never made use of the fact that these are charged particles. So far and for 
the rest of the Lecture, everything is applicable to both 1) charged particles beams and 2) 
photon beams.

(17)

(18)
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We can calculate the particle trajectory

𝑥𝑥𝑖𝑖 𝑠𝑠 = 𝑎𝑎𝑖𝑖 𝛽𝛽(𝑠𝑠)cos 𝜓𝜓 𝑧𝑧 + 𝜙𝜙𝑖𝑖
for given initial conditions if we know the betatron functions.  

Then how do we get the betatron functions? Do we have to integrate Eq. (12) for the 
betatron function?  

𝑑𝑑2

𝑑𝑑𝑧𝑧2 𝛽𝛽(𝑠𝑠) + 𝑘𝑘 𝑠𝑠 𝛽𝛽 𝑠𝑠 − 𝛽𝛽(𝑠𝑠)−3/2 = 0

We note from this differential equation that there is only one solution for 𝛽𝛽(𝑠𝑠) and 
𝛽𝛽 𝑠𝑠 > 0 always! 

Fortunately however, there are other ways to get the solution: We shall develop a matrix 
formalism, which we can use to transform the betatron functions from one place to 
another. This, in factm has been shown in Eq. (8). But here, we shall be explicitly 
formulating the propagation of the Twiss parameters.

(12)

Being nonlinear equation,  Eq. (12) is difficult to solve. 

We have already obtained the solution to this; Eqs. (8) and (6). But the introduction to 
Eq. (6) was not obvious there. 
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How do we do that? The answer is to use the Courant-Snyder invariant.
Let’s start with the invariant at 𝑠𝑠 = 0: 

𝛽𝛽 0 𝑥𝑥0′2 + 2𝛼𝛼 0 𝑥𝑥0𝑥𝑥0′ + 𝛾𝛾 0 𝑥𝑥02 = 𝜖𝜖

𝛽𝛽 𝑠𝑠 𝑥𝑥′2 + 2𝛼𝛼 𝑠𝑠 𝑥𝑥𝑥𝑥′ + 𝛾𝛾 𝑠𝑠 𝑥𝑥2 = 𝜖𝜖

This allows us to derive relations between 𝑠𝑠 = 0 and 𝑠𝑠. We use the phase-space 
transformation of a trajectory, i.e. 

𝑥𝑥(𝑠𝑠)
𝑥𝑥𝑥(𝑠𝑠) = 𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑
𝑥𝑥0
𝑥𝑥0′

to replace 𝑥𝑥0 and 𝑥𝑥0′ in

𝛽𝛽 0 𝑥𝑥0′2 + 2𝛼𝛼 0 𝑥𝑥0𝑥𝑥0′ + 𝛾𝛾 0 𝑥𝑥02 = 𝛽𝛽 𝑠𝑠 𝑥𝑥′2 + 2𝛼𝛼 𝑠𝑠 𝑥𝑥𝑥𝑥′ + 𝛾𝛾 𝑠𝑠 𝑥𝑥2 = 𝜖𝜖 = invariant

With 𝑥𝑥0
𝑥𝑥0′

= 𝑑𝑑 −𝑏𝑏
−𝑐𝑐 𝑎𝑎

𝑥𝑥(𝑠𝑠)
𝑥𝑥𝑥(𝑠𝑠)

we get

𝛽𝛽0(−𝑐𝑐𝑐𝑐 + 𝑎𝑎𝑥𝑥′)2+2𝛼𝛼0 𝑑𝑑𝑑𝑑 − 𝑏𝑏𝑥𝑥′ −𝑐𝑐𝑐𝑐 + 𝑎𝑎𝑥𝑥′ + 𝛾𝛾0 𝑑𝑑𝑑𝑑 − 𝑏𝑏𝑥𝑥′ 2

= 𝛽𝛽 𝑠𝑠 𝑥𝑥′2 + 2𝛼𝛼 𝑠𝑠 𝑥𝑥𝑥𝑥′ + 𝛾𝛾 𝑠𝑠 𝑥𝑥2

𝛽𝛽0 = 𝛽𝛽 0

(19) 𝛽𝛽 0 = 𝛽𝛽 𝑠𝑠 = 0 etc.

𝑥𝑥0 = 𝑥𝑥 𝑠𝑠 = 0
𝑥𝑥0′ = 𝑥𝑥𝑥 𝑠𝑠 = 0

Since this is invariant, it does not change at 𝑠𝑠 ≠ 0:

det 𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑 = 1where (Appendix A in Lecture 2)
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After sorting we find

𝑎𝑎2𝛽𝛽0 − 2𝑎𝑎𝑎𝑎𝛼𝛼0 + 𝑏𝑏2𝛾𝛾0 𝑥𝑥′2 + 2 −𝑐𝑐𝑐𝑐𝛽𝛽0 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 𝛼𝛼0 − 𝑏𝑏𝑑𝑑𝛾𝛾0 𝑥𝑥𝑥𝑥′
+ 𝑐𝑐2𝛽𝛽0 − 2𝑐𝑐𝑐𝑐𝛼𝛼0 + 𝑑𝑑2𝛾𝛾0 𝑥𝑥2 = 𝛽𝛽𝑥𝑥′2 + 2𝛼𝛼𝑥𝑥𝑥𝑥′ + 𝛾𝛾𝑥𝑥2

Comparing the coefficients, we get the new betatron functions as

𝛽𝛽(𝑠𝑠) = 𝑎𝑎2𝛽𝛽0 − 2𝑎𝑎𝑎𝑎𝛼𝛼0 + 𝑏𝑏2𝛾𝛾0

𝛼𝛼(𝑠𝑠) = −𝑐𝑐𝑐𝑐𝛽𝛽0 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 𝛼𝛼0 − 𝑏𝑏𝑏𝑏𝛾𝛾0

𝛾𝛾(𝑠𝑠) = 𝑐𝑐2𝛽𝛽0 − 2𝑐𝑐𝑐𝑐𝛼𝛼0 + 𝑑𝑑2𝛾𝛾0

This can be written in matrix form

𝛽𝛽(𝑠𝑠)
𝛼𝛼(𝑠𝑠)
𝛾𝛾(𝑠𝑠)

=
𝑎𝑎2 −2𝑎𝑎𝑎𝑎 𝑏𝑏2
−𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 −𝑏𝑏𝑏𝑏
𝑐𝑐2 −2𝑐𝑐𝑐𝑐 𝑑𝑑2

𝛽𝛽0
𝛼𝛼0
𝛾𝛾0

→

Thus based on single particle transformation matrices we can transform all betatron
functions. Similar to this, we can obtain the propagation of the elements of the beam 
(sigma) matrix discussed in p. 8.

But how do we get the first set of betatron functions, i.e. 𝛽𝛽0,𝛼𝛼0, 𝛾𝛾0?

𝛽𝛽
𝛼𝛼
𝛾𝛾

=
𝐶𝐶2 −2𝐶𝐶𝐶𝐶 𝑆𝑆2
−𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑆𝑆′ + 𝐶𝐶′𝑆𝑆 −𝑆𝑆𝑆𝑆𝑆
𝐶𝐶′2 −2𝐶𝐶′𝑆𝑆𝑆 𝑆𝑆′2

𝛽𝛽0
𝛼𝛼0
𝛾𝛾0

𝛾𝛾0 =
1 + 𝛼𝛼02

𝛽𝛽0

(20)
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The answer is “by measurement”.

 We have to measure the size, shape and orientation of the phase space ellipse.

 But we can measure only the beam size, width and height.

 We need to “rotate” ellipse and measure the size.

 This can be done with quadrupoles upstream.

 We measure beam size and a function of quadrupole strength. 

More details can be found in H. Wiedemann, Particle Accelerator Physics, 4th ed. P.224.
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Beam emittance
𝑥𝑥𝑖𝑖 𝑠𝑠 = 𝑎𝑎𝑖𝑖 𝛽𝛽(𝑠𝑠)cos 𝜓𝜓 𝑠𝑠 + 𝜙𝜙𝑖𝑖

𝑥𝑥𝑖𝑖′ 𝑠𝑠 = 𝑎𝑎𝑖𝑖
𝛽𝛽′

2 𝛽𝛽
cos 𝜓𝜓 𝑠𝑠 + 𝜙𝜙𝑖𝑖 − 𝑎𝑎𝑖𝑖 𝛽𝛽 𝑠𝑠 𝜓𝜓′sin 𝜓𝜓 𝑠𝑠 + 𝜙𝜙𝑖𝑖

𝛼𝛼 = −
𝛽𝛽′
2

𝜓𝜓′ =
1
𝛽𝛽

𝑥𝑥𝑖𝑖2 = 𝑎𝑎𝑖𝑖2𝛽𝛽cos2 𝜓𝜓 + 𝜙𝜙𝑖𝑖 =
1
2 𝑎𝑎𝑖𝑖2 𝛽𝛽 = 𝜖𝜖𝜖𝜖

𝑥𝑥𝑖𝑖′2 = 𝑎𝑎𝑖𝑖2
𝛼𝛼2

𝛽𝛽 cos2 𝜓𝜓 + 𝜙𝜙𝑖𝑖 − 𝑎𝑎𝑖𝑖2
𝛼𝛼
𝛽𝛽 cos 𝜓𝜓 + 𝜙𝜙𝑖𝑖 sin 𝜓𝜓 + 𝜙𝜙𝑖𝑖 + 𝑎𝑎𝑖𝑖2

1
𝛽𝛽 sin2 𝜓𝜓 + 𝜙𝜙𝑖𝑖

= 𝑎𝑎𝑖𝑖2
1
2

1 + 𝛼𝛼2

𝛽𝛽 = 𝜖𝜖𝜖𝜖

𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖′ = − 𝑎𝑎𝑖𝑖2 𝛼𝛼 cos2 𝜓𝜓 + 𝜙𝜙𝑖𝑖 − 𝑎𝑎𝑖𝑖2 cos 𝜓𝜓 + 𝜙𝜙𝑖𝑖 sin 𝜓𝜓 + 𝜙𝜙𝑖𝑖 = −𝜖𝜖𝜖𝜖

𝜖𝜖 = 𝑥𝑥𝑖𝑖2 𝑥𝑥𝑖𝑖′2 − 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖′
2

Let’s go back to Eq. (10),

(21)

For 𝑁𝑁 particles, we take averages of second-moments:

From these three relations we get the expression for the Rms (Root-mean-square) beam 
emittance for arbitrary particle distribution:

This expression is used to calculate the beam emittance for a collection of particles.

Σ = 𝑋𝑋𝑋𝑋𝑇𝑇 =
𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖′

𝑥𝑥𝑖𝑖 𝑥𝑥𝑖𝑖′ =
𝑥𝑥𝑖𝑖2 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖′

𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖′ 𝑥𝑥𝑖𝑖′2

Taking a derivative with respect to 𝑠𝑠

Eq. (6) is now obvious.
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Particle trajectories and betatron functions

Let’s write the general solution of the Hill’s equation in the following alternative (but 
equivalent) form:

𝑥𝑥 𝑠𝑠 = 𝑎𝑎 𝛽𝛽 𝑠𝑠 cos𝜓𝜓 𝑠𝑠 + 𝑏𝑏 𝛽𝛽 𝑠𝑠 sin𝜓𝜓 𝑠𝑠

Take a derivative with respect to 𝑠𝑠

𝑥𝑥′(𝑠𝑠) = −𝑎𝑎
𝛼𝛼 𝑠𝑠
𝛽𝛽 𝑠𝑠

cos𝜓𝜓 𝑧𝑧 +
1
𝛽𝛽 𝑠𝑠

sin𝜓𝜓 𝑠𝑠 + 𝑏𝑏 −
𝛼𝛼 𝑠𝑠
𝛽𝛽 𝑠𝑠

sin𝜓𝜓 𝑠𝑠 +
1
𝛽𝛽 𝑠𝑠

cos𝜓𝜓 𝑠𝑠

Let’s set at 𝑠𝑠 = 0

𝑥𝑥 𝑠𝑠 = 0 = 𝑥𝑥0, 𝑥𝑥′ 𝑠𝑠 = 0 = 𝑥𝑥0′ , 𝛽𝛽 𝑠𝑠 = 0 = 𝛽𝛽0, 𝛼𝛼 𝑠𝑠 = 0 = 𝛼𝛼0,

With these, we can determine the two constants 𝑎𝑎 and 𝑏𝑏

𝑥𝑥0 = 𝑎𝑎 𝛽𝛽0 → 𝑎𝑎 =
𝑥𝑥0
𝛽𝛽0

𝑥𝑥0′ = −𝑎𝑎
𝛼𝛼0
𝛽𝛽0

+ 𝑏𝑏
1
𝛽𝛽0

→ 𝑏𝑏 =
𝑥𝑥0
𝛽𝛽0
𝛼𝛼0 + 𝛽𝛽0𝑥𝑥0′

𝜓𝜓 𝑠𝑠 = 0 = 0

One can also write the transfer matrices in terms of the Twiss parameters.

where 𝑎𝑎 and 𝑏𝑏 are constants to be determined by initial conditions. 

21
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𝑥𝑥 𝑠𝑠 =
𝛽𝛽(𝑠𝑠)
𝛽𝛽0

cos𝜓𝜓 𝑠𝑠 + 𝛼𝛼0sin𝜓𝜓 𝑠𝑠 𝑥𝑥0 + 𝛽𝛽0𝛽𝛽(𝑠𝑠)sin𝜓𝜓 𝑠𝑠 𝑥𝑥0′

𝑥𝑥′ 𝑠𝑠 =
1

𝛽𝛽0𝛽𝛽(𝑠𝑠)
𝛼𝛼0 − 𝛼𝛼 𝑠𝑠 cos𝜓𝜓 𝑠𝑠 − 1 + 𝛼𝛼0𝛼𝛼(𝑠𝑠) sin𝜓𝜓 𝑠𝑠 𝑥𝑥0

+
𝛽𝛽0
𝛽𝛽(𝑧𝑧) cos𝜓𝜓 𝑠𝑠 − 𝛼𝛼(𝑠𝑠)sin𝜓𝜓 𝑠𝑠 𝑥𝑥0′

This can be expressed in matrix form
𝑥𝑥(𝑠𝑠)
𝑥𝑥𝑥(𝑠𝑠) = 𝐶𝐶 𝑆𝑆

𝐶𝐶𝐶 𝑆𝑆𝑆
𝑥𝑥0
𝑥𝑥0′

𝑀𝑀 𝑠𝑠|𝑠𝑠0 = 𝐶𝐶 𝑆𝑆
𝐶𝐶𝐶 𝑆𝑆𝑆 =

𝛽𝛽(𝑠𝑠)
𝛽𝛽0

(cos𝜓𝜓 + 𝛼𝛼0sin𝜓𝜓) 𝛽𝛽0𝛽𝛽(𝑠𝑠) sin𝜓𝜓

1
𝛽𝛽0𝛽𝛽(𝑠𝑠)

𝛼𝛼0 − 𝛼𝛼(𝑠𝑠) cos𝜓𝜓 − 1 + 𝛼𝛼(𝑠𝑠)𝛼𝛼0 sin𝜓𝜓
𝛽𝛽0
𝛽𝛽(𝑠𝑠) (cos𝜓𝜓 − 𝛼𝛼0sin𝜓𝜓)

(22)

where

𝑥𝑥0 = 𝑥𝑥(𝑠𝑠 = 𝑠𝑠0)

𝑥𝑥0′ = 𝑥𝑥0′ (𝑠𝑠 = 𝑠𝑠0)
𝑋𝑋 𝑠𝑠 = 𝑀𝑀 𝑠𝑠|𝑠𝑠0 𝑋𝑋 𝑠𝑠0 or
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Or if we define the betatron amplitude matrix

𝐵𝐵 𝑠𝑠 =
𝛽𝛽(𝑠𝑠) 0

−
𝛼𝛼(𝑠𝑠)
𝛽𝛽(𝑠𝑠)

1
𝛽𝛽(𝑠𝑠)

and 𝐵𝐵−1 𝑠𝑠 =

1
𝛽𝛽(𝑠𝑠)

0

𝛼𝛼(𝑠𝑠)
𝛽𝛽(𝑠𝑠)

𝛽𝛽(𝑠𝑠)

𝐶𝐶(𝑠𝑠) 𝑆𝑆(𝑠𝑠)
𝐶𝐶𝐶(𝑠𝑠) 𝑆𝑆𝑆(𝑠𝑠) = 𝐵𝐵(𝑠𝑠) cos𝜓𝜓 sin𝜓𝜓

−sin𝜓𝜓 cos𝜓𝜓 𝐵𝐵−1 𝑠𝑠0

Then the transfer matrix in terms of Twiss parameters can be written as

(25)

𝐶𝐶(𝑠𝑠) 𝑆𝑆(𝑠𝑠)
𝐶𝐶𝐶(𝑠𝑠) 𝑆𝑆𝑆(𝑠𝑠) =

𝛽𝛽(𝑠𝑠) 0

−
𝛼𝛼(𝑠𝑠)
𝛽𝛽(𝑠𝑠)

1
𝛽𝛽(𝑠𝑠)

cos𝜓𝜓 sin𝜓𝜓
−sin𝜓𝜓 cos𝜓𝜓

1
𝛽𝛽0

0

𝛼𝛼0
𝛽𝛽0

𝛽𝛽0
(23)

Eq. (22) can be written in another form:

(24)

23
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𝑀𝑀 𝐶𝐶 =
𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢′ 𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢′ = cosΔ𝜓𝜓 + 𝛼𝛼0sinΔ𝜓𝜓 𝛽𝛽0sinΔ𝜓𝜓

−𝛾𝛾0sinΔ𝜓𝜓 cosΔ𝜓𝜓 − 𝛼𝛼0sinΔ𝜓𝜓
where 𝛽𝛽0 = 𝛽𝛽, 𝛼𝛼0 = 𝛼𝛼, 𝛾𝛾0 = 𝛾𝛾
and Δ𝜓𝜓 is the phase advance per unit (cell): 

From Eq. (22), we see that the transfer matrix for a periodic lattice is

(26)

𝜈𝜈 =
Δ𝜓𝜓(𝐶𝐶)

2𝜋𝜋 =
1

2𝜋𝜋
�
𝑑𝑑𝑠𝑠
𝛽𝛽

(𝐶𝐶 = 2𝜋𝜋𝑅𝑅)

|Trace[𝑀𝑀(𝐶𝐶)]|< 2 for stable motionNote that

(27)

An important parameter in synchrotrons and storage rings is the tune defined as

where Δ𝜓𝜓(𝐶𝐶) is the phase advance per one revolution (i.e. 𝑁𝑁 cell).

So the tune is the number of oscillaions per one revolution of the reference particle 
around the ring. 
The larger the tune the stronger the focusing is.

Δ𝜓𝜓 = �
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑑𝑑𝑑𝑑
𝛽𝛽

Per each plane, the tune is defined; 𝜈𝜈𝑥𝑥 = 15.28, 𝜈𝜈𝑦𝑦 = 9.18 in PLS-2, 𝐶𝐶 = 281.82 m

𝜈𝜈𝑥𝑥 = 68.18, 𝜈𝜈𝑦𝑦 = 23.26 in 4GSR, 𝐶𝐶 = 799.297 m 

Tunes must be carefully chosen to avoid possible resonances.

Tune may change with particle’s oscillation amplitude, momentum deviation, etc.
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