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In Lecture 1 we have derived the scaled Hamiltonian in curved coordinates in canonical 
variables 𝑥𝑥, 𝜋𝜋𝑥𝑥

𝑝𝑝0
, 𝑦𝑦, 𝜋𝜋𝑦𝑦

𝑝𝑝0
and (−𝑐𝑐∆𝑡𝑡, 𝑝𝑝𝑡𝑡), which is given by 

𝑧𝑧 = −𝑐𝑐∆𝑡𝑡 = −𝑐𝑐 𝑡𝑡 − 𝑡𝑡0 𝑠𝑠 =
𝑠𝑠
𝛽𝛽0
− 𝑐𝑐𝑐𝑐,

𝑝𝑝𝑡𝑡 =
𝐸𝐸 − 𝐸𝐸0
𝑝𝑝0𝑐𝑐

=
𝑝𝑝𝜏𝜏
𝑐𝑐 =

𝐸𝐸
𝑝𝑝0𝑐𝑐

−
1
𝛽𝛽0

=
1
𝛽𝛽0
𝐸𝐸 − 𝐸𝐸0
𝐸𝐸0

=
1
𝛽𝛽0

𝛾𝛾
𝛾𝛾0
− 1 =

∆𝛾𝛾
𝛽𝛽0𝛾𝛾0

𝐴𝐴𝑠𝑠 = 𝑨𝑨 � 𝒆𝒆𝑠𝑠

𝜋𝜋𝑥𝑥 = 𝛾𝛾𝛽𝛽𝑥𝑥𝑚𝑚𝑚𝑚 + 𝑞𝑞𝐴𝐴𝑥𝑥 = 𝑝𝑝𝑥𝑥 + 𝑞𝑞𝐴𝐴𝑥𝑥
𝜋𝜋𝑦𝑦 = 𝛾𝛾𝛽𝛽𝑦𝑦𝑚𝑚𝑚𝑚 + 𝑞𝑞𝐴𝐴𝑦𝑦 = 𝑝𝑝𝑦𝑦 + 𝑞𝑞𝐴𝐴𝑦𝑦

1 + 𝛿𝛿 2 = 1 +
2𝑝𝑝𝑡𝑡
𝛽𝛽0

+ 𝑝𝑝𝑡𝑡2 =
1
𝛽𝛽0

+ 𝑝𝑝𝑡𝑡
2

−
1

𝛽𝛽02𝛾𝛾02

𝐻𝐻 =
𝑝𝑝𝑡𝑡
𝛽𝛽0
− 1 + ℎ𝑥𝑥

1
𝛽𝛽0

+ 𝑝𝑝𝑡𝑡
2

−
𝜋𝜋𝑥𝑥 − 𝑞𝑞𝐴𝐴𝑥𝑥

𝑝𝑝0

2

−
𝜋𝜋𝑦𝑦 − 𝑞𝑞𝐴𝐴𝑦𝑦

𝑝𝑝0

2

−
1

𝛽𝛽02𝛾𝛾02
− 1 + ℎ𝑥𝑥

𝑞𝑞𝐴𝐴𝑠𝑠
𝑝𝑝0

Canonical (transverse) momenta are

(1)

(3)

(4)

(5)

Longitudinal conjugate variables are

𝛿𝛿 =
𝑝𝑝 − 𝑝𝑝0
𝑝𝑝0

=
∆𝑝𝑝
𝑝𝑝0

=
𝑝𝑝𝑡𝑡
𝛽𝛽 ≈

𝑝𝑝𝑡𝑡
𝛽𝛽0

where

ℎ(𝑠𝑠) =
1

𝜌𝜌(𝑠𝑠)
and

(6)

(2)
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Using the Hamiltonian given in Eq. (1) we can derive 6 × 6 linear maps for various beam 
optical elements.
To get a linear transfer map, we first need to find the vector potential 𝑨𝑨, expand the 
corresponding Hamiltonian to second order in dynamical variables and apply the Hamilton’s 
equations. Then we can obtain linear second order differential equations, which can be 
solved and linear map can be obtained. In the following, we shall derive linear maps for 
various beam optical elements in synchrotrons.

As a simplest case, let’s first consider a drift (or free) space of length 𝐿𝐿. In this case ℎ = 1
𝜌𝜌

=
0 and 𝑨𝑨 = 0 so the Hamiltonian in Eq. (1) becomes

𝐻𝐻 =
𝑝𝑝𝑡𝑡
𝛽𝛽0
−

1
𝛽𝛽0

+ 𝑝𝑝𝑡𝑡
2

−
𝑝𝑝𝑥𝑥
𝑝𝑝0

2

−
𝑝𝑝𝑦𝑦
𝑝𝑝0

2

−
1

𝛽𝛽02𝛾𝛾02
(7)

Drift space

This Hamiltonian can be expanded to second order in dynamical variables and we get

𝐻𝐻 ≈ −1 +
𝑝𝑝𝑥𝑥2

2𝑝𝑝02
+

𝑝𝑝𝑦𝑦2

2𝑝𝑝02
+

𝑝𝑝𝑡𝑡2

2𝛽𝛽02𝛾𝛾02
(8)

The constant term can be neglected. Substituting this Hamiltonian into the Hamilton’s 
equations, one can get the linear map, but here we show a different method.
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where

The Hamilton’s equations can be written in the form  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑆𝑆𝛻𝛻𝑞𝑞,𝜋𝜋𝐻𝐻 (9)

𝑋𝑋 =

𝑥𝑥
𝜋𝜋𝑥𝑥
𝑝𝑝0
𝑦𝑦
𝜋𝜋𝑦𝑦
𝑝𝑝0
𝑧𝑧
𝑝𝑝𝑡𝑡

𝑆𝑆 =

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

𝛻𝛻𝑞𝑞,𝜋𝜋𝐻𝐻 =

𝜕𝜕𝐻𝐻/𝜕𝜕𝑥𝑥
𝜕𝜕𝐻𝐻/𝜕𝜕( ⁄𝜋𝜋𝑥𝑥 𝑝𝑝0)

𝜕𝜕𝐻𝐻/𝜕𝜕𝑦𝑦
𝜕𝜕𝐻𝐻/𝜕𝜕( ⁄𝜋𝜋𝑦𝑦 𝑝𝑝0)

𝜕𝜕𝐻𝐻/𝜕𝜕𝑧𝑧
𝜕𝜕𝐻𝐻/𝜕𝜕𝑝𝑝𝑡𝑡

(10)

𝑑𝑑𝑥𝑥/𝑑𝑑𝑑𝑑
𝑑𝑑( ⁄𝜋𝜋𝑥𝑥 𝑝𝑝0)/𝑑𝑑𝑑𝑑

𝑑𝑑𝑦𝑦/𝑑𝑑𝑑𝑑
𝑑𝑑( ⁄𝜋𝜋𝑦𝑦 𝑝𝑝0)/𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑
𝑑𝑑𝑝𝑝𝑡𝑡/𝑑𝑑𝑑𝑑

=

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

𝜕𝜕𝐻𝐻/𝜕𝜕𝑥𝑥
𝜕𝜕𝐻𝐻/𝜕𝜕( ⁄𝜋𝜋𝑥𝑥 𝑝𝑝0)

𝜕𝜕𝐻𝐻/𝜕𝜕𝑦𝑦
𝜕𝜕𝐻𝐻/𝜕𝜕( ⁄𝜋𝜋𝑦𝑦 𝑝𝑝0)

𝜕𝜕𝐻𝐻/𝜕𝜕𝑧𝑧
𝜕𝜕𝐻𝐻/𝜕𝜕𝑝𝑝𝑡𝑡

So the Hamilton’s equations (9) can be expressed in matrix form:

(11)

4

Note that 𝑆𝑆2 = −𝐼𝐼 and 𝑆𝑆𝑇𝑇 = −𝑆𝑆. 𝑆𝑆𝑇𝑇: transpose of 𝑆𝑆
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If the Hamiltonian is a homogeneous polynomial of degree 2 [as in Eq. (8)], we can write

𝛻𝛻𝑞𝑞,𝜋𝜋𝐻𝐻 = 𝑈𝑈𝑈𝑈

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑆𝑆𝑆𝑆𝑆𝑆

𝑈𝑈: a 6 × 6 matrix 

𝑋𝑋 𝐿𝐿 = 𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝑋𝑋 0 ≡ 𝑀𝑀(𝐿𝐿)𝑋𝑋0

Then the Hamilton’s equations, Eq. (9) become

The integrations lead to 

𝑋𝑋0 = 𝑋𝑋 0
and

𝑀𝑀 𝐿𝐿 = 𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿 = �
𝑛𝑛=0

∞
𝐿𝐿𝑛𝑛

𝑛𝑛! 𝑆𝑆𝑆𝑆 𝑛𝑛

(12)

(13)

(14)

(15)

is the 6 × 6 linear map that we want.

so �
𝑋𝑋 0

𝑋𝑋 𝐿𝐿 𝑑𝑑𝑑𝑑
𝑋𝑋

= �
0

𝐿𝐿
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

where

Let’s apply this observation to the drift space. With the expanded Hamiltonian given in 
Eq. (8),  Eq. (12) becomes with Eq. (10)

𝛻𝛻𝑞𝑞,𝜋𝜋𝐻𝐻 =

0
⁄𝑝𝑝𝑥𝑥 𝑝𝑝0
0
⁄𝑝𝑝𝑦𝑦 𝑝𝑝0
0

𝑝𝑝𝑡𝑡/𝛽𝛽02𝛾𝛾02

= 𝑈𝑈𝑈𝑈 = 𝑈𝑈

𝑥𝑥
⁄𝑝𝑝𝑥𝑥 𝑝𝑝0
𝑦𝑦
⁄𝑝𝑝𝑦𝑦 𝑝𝑝0
𝑧𝑧
𝑝𝑝𝑡𝑡

Note: For a drift space, 

𝜋𝜋𝑥𝑥 = 𝑝𝑝𝑥𝑥
𝜋𝜋𝑦𝑦 = 𝑝𝑝𝑦𝑦
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𝑈𝑈 =

0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 ⁄1 𝛽𝛽02𝛾𝛾02

We find easily the matrix 𝑈𝑈 by inspection

𝑀𝑀 𝐿𝐿 = 𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿 = exp 𝐿𝐿

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 ⁄1 𝛽𝛽02𝛾𝛾02

Then Eq. (15) becomes 

𝑀𝑀 𝐿𝐿 ≈ 𝐼𝐼 + 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑀𝑀drift =

1 𝐿𝐿 0 0 0 0
0 1 0 0 0 0
0 0 1 𝐿𝐿 0 0
0 0 0 1 0 0

0 0 0 0 1
𝐿𝐿

𝛽𝛽02𝛾𝛾02
0 0 0 0 0 1

Finally we get the linear map for drift space of length 𝐿𝐿:

(16)

where 𝐼𝐼 is the unit matrix.
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Note that Eq. (16) satisfies the symplectic condition 𝑀𝑀𝑇𝑇𝑆𝑆𝑆𝑆 = 𝑆𝑆

Notice that if we apply the Hamilton’s equation directly to the Hamiltonian before 
expansion in Eq. (6) we get the exact nonlinear map for the drift space:

𝑥𝑥1 = 𝑥𝑥0 +
𝑝𝑝𝑥𝑥𝑥/𝑝𝑝0
𝑑𝑑

𝐿𝐿

𝑝𝑝𝑥𝑥1 = 𝑝𝑝𝑥𝑥𝑥

𝑦𝑦1 = 𝑦𝑦0 +
𝑝𝑝𝑦𝑦𝑦/𝑝𝑝0
𝑑𝑑 𝐿𝐿

𝑝𝑝𝑦𝑦𝑦 = 𝑝𝑝𝑦𝑦0
𝑧𝑧1 = 𝑧𝑧0 +

𝐿𝐿
𝛽𝛽0

1 −
1
𝑑𝑑 −

𝐿𝐿
𝑑𝑑 𝑝𝑝𝑡𝑡𝑡

𝑝𝑝𝑡𝑡𝑡 = 𝑝𝑝𝑡𝑡0

(17)

𝑑𝑑 =
1
𝛽𝛽0

+ 𝑝𝑝𝑡𝑡
2

−
𝑝𝑝𝑥𝑥
𝑝𝑝0

2

−
𝑝𝑝𝑦𝑦
𝑝𝑝0

2

−
1

𝛽𝛽02𝛾𝛾02

If we expand 𝑑𝑑−1 , substitute the result into Eq. (18) and keep the terms up to the first 
order in dynamical variables, we get the same linear map as Eq. (16).  

where

(18)

Note also that Eq. (17) is identical to 𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇 = 𝑆𝑆. By taking the determinant of Eq. (17), 
det(𝑀𝑀𝑇𝑇𝑆𝑆𝑆𝑆) = det 𝑆𝑆 , we find that det 𝑀𝑀 = ±1. Although not trivial to prove, it turns out 
that only  det 𝑀𝑀 = +1 is valid. Read Appendix B for the derivation of Eq. (17).
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Multipole expansion of two-dimensional fields
To obtain the Hamiltonian for an accelerator element, we have to know the vector potential. 
Assuming a magnet with infinite length, we can consider only two-dimensional transverse 
fields.
We are interested in the fields in source-free region (i.e. inside the vacuum chamber where 
particles move), then in that region magnetic fields must satisfy

𝛻𝛻 � 𝑩𝑩 = 0 𝛻𝛻 × 𝑩𝑩 = 0and (19)

With 𝐵𝐵𝑠𝑠 constant (or zero), we can find 𝐵𝐵𝑥𝑥 and 𝐵𝐵𝑦𝑦 and write them in complex notation:

𝐵𝐵 𝑧𝑧 = 𝐵𝐵𝑦𝑦 + 𝑖𝑖𝐵𝐵𝑥𝑥 = �
𝑛𝑛=0

∞

𝐶𝐶𝑛𝑛(𝑥𝑥 + 𝑖𝑖𝑖𝑖)𝑛𝑛 = �
𝑛𝑛=0

∞

𝐵𝐵𝑛𝑛 + 𝑖𝑖𝐴𝐴𝑛𝑛 (𝑥𝑥 + 𝑖𝑖𝑖𝑖)𝑛𝑛 (20)

where 𝐶𝐶𝑛𝑛 is a complex constant, 𝐶𝐶𝑛𝑛 = 𝐵𝐵𝑛𝑛 + 𝑖𝑖𝐴𝐴𝑛𝑛, with 𝐵𝐵𝑛𝑛,𝐴𝐴𝑛𝑛being real. By applying the 
differential operator 𝜕𝜕

𝜕𝜕𝑥𝑥
+ 𝑖𝑖

𝜕𝜕
𝜕𝜕𝑦𝑦

to Eq. (20) we can show that Eq. (20) indeed satisfies

Then we obtain the complex potential expanded in multipoles (in US convention):

𝐴𝐴 𝑧𝑧 = 𝐴𝐴𝑠𝑠 + 𝑖𝑖𝑖𝑖 = −�
𝑛𝑛=0

∞
1

𝑛𝑛 + 1𝐶𝐶𝑛𝑛(𝑥𝑥 + 𝑖𝑖𝑖𝑖)𝑛𝑛+1

𝐵𝐵 𝑧𝑧 = −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(21)

(22)

where 𝑉𝑉 is the electric scalar potential. The complex potential and the complex fields are 
connected through

8

Eq. (19). 

(𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖)
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From Eq. (21), we get the vector potential  

𝐴𝐴𝑠𝑠 = −𝑅𝑅𝑅𝑅�
𝑛𝑛=0

∞
1

𝑛𝑛 + 1
𝐶𝐶𝑛𝑛(𝑥𝑥 + 𝑖𝑖𝑖𝑖)𝑛𝑛+1 = −𝑅𝑅𝑅𝑅�

𝑛𝑛=0

∞
1

𝑛𝑛 + 1 𝐵𝐵𝑛𝑛 + 𝑖𝑖𝐴𝐴𝑛𝑛 (𝑥𝑥 + 𝑖𝑖𝑖𝑖)𝑛𝑛+1 (23)

We can rewrite Eq. (23) in the form 

𝐴𝐴𝑠𝑠 = −
𝑝𝑝0
𝑞𝑞
𝑅𝑅𝑅𝑅�

𝑛𝑛=0

∞
1

𝑛𝑛 + 1
𝑏𝑏𝑛𝑛 + 𝑖𝑖𝑎𝑎𝑛𝑛 (𝑥𝑥 + 𝑖𝑖𝑖𝑖)𝑛𝑛+1

where 𝑏𝑏𝑛𝑛 and 𝑎𝑎𝑛𝑛 are normal and skew components of the multipole field respectively. They 
are related with the usual notation for multipole strength in a computer code like MAD:  

𝑏𝑏𝑛𝑛 =
𝑞𝑞

𝑛𝑛!𝑝𝑝0
𝐵𝐵𝑛𝑛 =

𝑞𝑞
𝑛𝑛!𝑝𝑝0

�
𝜕𝜕𝑛𝑛𝐵𝐵𝑦𝑦
𝜕𝜕𝑥𝑥𝑛𝑛 (0,0,𝑠𝑠)

=
1
𝑛𝑛! 𝑘𝑘𝑛𝑛

𝑎𝑎𝑛𝑛 =
𝑞𝑞

𝑛𝑛!𝑝𝑝0
𝐴𝐴𝑛𝑛 =

𝑞𝑞
𝑛𝑛!𝑝𝑝0

�
𝜕𝜕𝑛𝑛𝐵𝐵𝑥𝑥
𝜕𝜕𝑥𝑥𝑛𝑛 (0,0,𝑠𝑠)

= −
1
𝑛𝑛!

�𝑘𝑘𝑛𝑛

𝑘𝑘𝑛𝑛 =
𝑞𝑞
𝑝𝑝0

�
𝜕𝜕𝑛𝑛𝐵𝐵𝑦𝑦
𝜕𝜕𝑥𝑥𝑛𝑛 (0,0,𝑠𝑠)

�𝑘𝑘𝑛𝑛 = −
𝑞𝑞
𝑝𝑝0

�
𝜕𝜕𝑛𝑛𝐵𝐵𝑥𝑥
𝜕𝜕𝑥𝑥𝑛𝑛 (0,0,𝑠𝑠)

(24)

(25)

𝑛𝑛 = 0 : dipole

𝑛𝑛 = 1 : quadrupole

𝑛𝑛 = 2 : sextupole

𝑛𝑛 = 3 : octupole etc.

𝑘𝑘0 = �
𝑞𝑞𝐵𝐵𝑦𝑦
𝑝𝑝0 (0,0,𝑠𝑠)

𝑘𝑘1 =
𝑞𝑞
𝑝𝑝0

�
𝜕𝜕𝐵𝐵𝑦𝑦
𝜕𝜕𝑥𝑥 (0,0,𝑠𝑠)
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Sector bending (or dipole) magnet
For a dipole magnet, uniform magnetic field is given by 𝑩𝑩 𝑥𝑥,𝑦𝑦, 𝑠𝑠 = 0,𝐵𝐵0, 0 . In 
curvilinear coordinate system, 𝑩𝑩 is related to the vector potential 𝑨𝑨:

𝑩𝑩 = 𝛻𝛻 × 𝑨𝑨 =
1

ℎ1ℎ2ℎ3

ℎ1𝒆𝒆1 ℎ2𝒆𝒆2 ℎ3𝒆𝒆3
𝜕𝜕
𝜕𝜕𝑢𝑢1

𝜕𝜕
𝜕𝜕𝑢𝑢2

𝜕𝜕
𝜕𝜕𝑢𝑢3

ℎ1𝐴𝐴1 ℎ2𝐴𝐴2 ℎ3𝐴𝐴3

(26)

where ℎ1 = ℎ2= 1, ℎ3= 1 + ℎ𝑥𝑥, (𝑢𝑢1, 𝑢𝑢2 , 𝑢𝑢3 ) = 𝑥𝑥,𝑦𝑦, 𝑠𝑠 , (𝐴𝐴1, 𝐴𝐴2 , 𝐴𝐴3) = 𝐴𝐴𝑥𝑥,𝐴𝐴𝑦𝑦 ,𝐴𝐴𝑠𝑠

Field components are then given by 

𝐵𝐵𝑥𝑥 =
𝜕𝜕𝐴𝐴𝑠𝑠
𝜕𝜕𝑦𝑦 −

1
1 + ℎ𝑥𝑥

𝜕𝜕𝐴𝐴𝑦𝑦
𝜕𝜕𝑠𝑠 , 𝐵𝐵𝑦𝑦 =

1
1 + ℎ𝑥𝑥

𝜕𝜕𝐴𝐴𝑥𝑥
𝜕𝜕𝑠𝑠 −

𝜕𝜕𝐴𝐴𝑠𝑠
𝜕𝜕𝑥𝑥 −

ℎ𝐴𝐴𝑠𝑠
1 + ℎ𝑥𝑥 , 𝐵𝐵𝑠𝑠 =

𝜕𝜕𝐴𝐴𝑦𝑦
𝜕𝜕𝑥𝑥 −

𝜕𝜕𝐴𝐴𝑥𝑥
𝜕𝜕𝑦𝑦

(27)

For dipole field, using a gauge, 𝐴𝐴𝑥𝑥 = 𝐴𝐴𝑦𝑦 = 0, the field 𝑩𝑩 = 𝐵𝐵0𝒆𝒆𝑦𝑦 can be derived from the 
vector potential

𝒆𝒆1= 𝒆𝒆𝑥𝑥, 𝒆𝒆2= 𝒆𝒆𝑦𝑦 , 𝒆𝒆3= 𝒆𝒆𝑠𝑠

𝑨𝑨 = (0, 0,−𝐵𝐵0𝑥𝑥 +
𝐵𝐵0ℎ𝑥𝑥2

2 1 + ℎ𝑥𝑥 ) (28)

and the normalized vector potential is 𝒂𝒂 =
𝑞𝑞
𝑝𝑝0
𝑨𝑨 = (0, 0,−𝑘𝑘0𝑥𝑥 +

𝑘𝑘0ℎ𝑥𝑥2

2 1 + ℎ𝑥𝑥 )
𝑘𝑘0 =

𝑞𝑞
𝑝𝑝0
𝐵𝐵0

(29)

where (30)

10
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Inserting Eq. (29) into the Hamiltonian given in Eq. (1), we have 

𝐻𝐻 =
𝑝𝑝𝑡𝑡
𝛽𝛽0
− 1 + ℎ𝑥𝑥

1
𝛽𝛽0

+ 𝑝𝑝𝑡𝑡
2

−
𝑝𝑝𝑥𝑥
𝑝𝑝0

2

−
𝑝𝑝𝑦𝑦
𝑝𝑝0

2

−
1

𝛽𝛽02𝛾𝛾02
− 1 + ℎ𝑥𝑥 −𝑘𝑘0𝑥𝑥 +

𝑘𝑘0ℎ𝑥𝑥2

2 1 + ℎ𝑥𝑥
(31)We can find an exact transformation from this Hamiltonian, but the result is not 

illuminating and it is sufficient to get the approximate linearized transformation. Hence, we 
expand Eq. (31) to second order in dynamical variables and get

𝐻𝐻 =
1
2

𝑝𝑝𝑥𝑥
𝑝𝑝0

2

+
1
2

𝑝𝑝𝑦𝑦
𝑝𝑝0

2

+
𝑝𝑝𝑡𝑡2

2𝛽𝛽02𝛾𝛾02
+ 𝑘𝑘0 − ℎ 1 +

𝑝𝑝𝑡𝑡
𝛽𝛽0

𝑥𝑥 +
𝑘𝑘0ℎ

2
𝑥𝑥2 (32)

For a combined-function magnet (i.e. bending magnet with normal 
quadrupole component in it) we have to include the focusing term. From 
Eqs. (24) and (25) we add the quadrupole focusing term to Eq. (32) to get

𝐻𝐻 =
1
2

𝑝𝑝𝑥𝑥
𝑝𝑝0

2

+
1
2

𝑝𝑝𝑦𝑦
𝑝𝑝0

2

+
𝑝𝑝𝑡𝑡2

2𝛽𝛽02𝛾𝛾02
+ 𝑘𝑘0 − ℎ 1 +

𝑝𝑝𝑡𝑡
𝛽𝛽0

𝑥𝑥 +
𝑘𝑘0ℎ

2 𝑥𝑥2 +
𝑘𝑘1
2 𝑥𝑥2 − 𝑦𝑦2 (33)

With Eq. (33) we get the Hamilton’s equations:

𝑘𝑘1 =
𝑞𝑞
𝑝𝑝0

�
𝜕𝜕𝐵𝐵𝑦𝑦
𝜕𝜕𝑥𝑥 (0,0,𝑠𝑠)

where is the normalized field gradient usually called the focusing strength.

ALS 1.8 T dipole
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝐻𝐻

𝜕𝜕( ⁄𝑝𝑝𝑥𝑥 𝑝𝑝0)
=
𝑝𝑝𝑥𝑥
𝑝𝑝0

,

𝑑𝑑( ⁄𝑝𝑝𝑥𝑥 𝑝𝑝0)
𝑑𝑑𝑑𝑑

= −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑥𝑥

= − 𝑘𝑘0 − ℎ 1 +
𝑝𝑝𝑡𝑡
𝛽𝛽0

− 𝑘𝑘0ℎ𝑥𝑥 − 𝑘𝑘1𝑥𝑥

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝐻𝐻

𝜕𝜕( ⁄𝑝𝑝𝑦𝑦 𝑝𝑝0)
=
𝑝𝑝𝑦𝑦
𝑝𝑝0

, 𝑑𝑑( ⁄𝑝𝑝𝑦𝑦 𝑝𝑝0)
𝑑𝑑𝑑𝑑

= −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑦𝑦

= 𝑘𝑘1𝑦𝑦

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝐻𝐻
𝜕𝜕𝑝𝑝𝑡𝑡

=
𝑝𝑝𝑡𝑡
𝛽𝛽02𝛾𝛾02

−
ℎ
𝛽𝛽0
𝑥𝑥, 𝑑𝑑𝑝𝑝𝑡𝑡

𝑑𝑑𝑑𝑑
= −

𝜕𝜕𝐻𝐻
𝜕𝜕𝑧𝑧

= 0

(34)

𝑥𝑥′′ + 𝐾𝐾𝑥𝑥𝑥𝑥 =
ℎ𝑝𝑝𝑡𝑡
𝛽𝛽0

+ ℎ − 𝑘𝑘0

𝑦𝑦′′ − 𝑘𝑘1𝑦𝑦 = 0 (35)

where 𝐾𝐾𝑥𝑥 = ℎ𝑘𝑘0 + 𝑘𝑘1. 

12

The four first-order transverse equations can be combined to two second-order differential 
equations:

With the general initial conditions, i.e. at 𝑠𝑠 = 0, 𝑥𝑥 = 𝑥𝑥0, 𝑦𝑦 = 𝑦𝑦0, 𝑥𝑥′= 𝑥𝑥0′ , 𝑦𝑦′= 𝑦𝑦0′ , and 
𝑧𝑧 = 𝑧𝑧0, 𝑝𝑝𝑡𝑡 = 𝑝𝑝𝑡𝑡𝑡, the solutions can be obtained easily. For example, the horizontal 
equation can be solved using the variation of parameters (or Green’s function) method.

𝑥𝑥′=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =

𝑝𝑝𝑥𝑥
𝑝𝑝0

𝑦𝑦′=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =

𝑝𝑝𝑦𝑦
𝑝𝑝0

𝑘𝑘0 =
𝑞𝑞
𝑝𝑝0
𝐵𝐵0 𝑘𝑘1 =

𝑞𝑞
𝑝𝑝0

�
𝜕𝜕𝐵𝐵𝑦𝑦
𝜕𝜕𝑥𝑥 (0,0,𝑠𝑠)



Accelerator Summer School, 2025

Dane & Department of Physics, POSTECH moohyun@postech.ac.kr13

The solutions are given by 

𝑥𝑥 𝐿𝐿 = 𝑥𝑥0cos 𝐾𝐾𝑥𝑥𝐿𝐿 + 𝑥𝑥0′
sin 𝐾𝐾𝑥𝑥𝐿𝐿

𝐾𝐾𝑥𝑥
+ 𝑝𝑝𝑡𝑡0

ℎ
𝛽𝛽0

1 − cos 𝐾𝐾𝑥𝑥𝐿𝐿
𝐾𝐾𝑥𝑥

+ ℎ − 𝑘𝑘0
1 − cos 𝐾𝐾𝑥𝑥𝐿𝐿

𝐾𝐾𝑥𝑥

𝑥𝑥𝑥 𝐿𝐿 = −𝑥𝑥0 𝐾𝐾𝑥𝑥sin 𝐾𝐾𝑥𝑥𝐿𝐿 + 𝑥𝑥0′ cos 𝐾𝐾𝑥𝑥𝐿𝐿 + 𝑝𝑝𝑡𝑡0
ℎ
𝛽𝛽0

sin 𝐾𝐾𝑥𝑥𝐿𝐿
𝐾𝐾𝑥𝑥

+ ℎ − 𝑘𝑘0
sin 𝐾𝐾𝑥𝑥𝐿𝐿

𝐾𝐾𝑥𝑥
𝑦𝑦 𝐿𝐿 = 𝑦𝑦0cosh 𝑘𝑘1𝐿𝐿 + 𝑦𝑦0′

sinh 𝑘𝑘1𝐿𝐿
𝑘𝑘1

𝑦𝑦𝑦 𝐿𝐿 = 𝑦𝑦0 𝑘𝑘1sinh 𝑘𝑘1𝐿𝐿 + 𝑦𝑦0′cosh 𝑘𝑘1𝐿𝐿

where 𝐿𝐿 is the effective (or magnetic) length of the dipole magnet, which is the path 
length of the reference particle inside the magnet. 

𝑧𝑧 𝐿𝐿 = −
ℎ
𝛽𝛽0

sin 𝐾𝐾𝑥𝑥𝐿𝐿
𝐾𝐾𝑥𝑥

𝑥𝑥0 −
ℎ
𝛽𝛽0

1 − cos 𝐾𝐾𝑥𝑥𝐿𝐿
𝐾𝐾𝑥𝑥

𝑥𝑥0′ + 𝑧𝑧0 +
𝐿𝐿

𝛽𝛽02𝛾𝛾02
𝑝𝑝𝑡𝑡𝑡 −

ℎ2

𝛽𝛽02𝐾𝐾𝑥𝑥
𝐿𝐿 −

1
𝐾𝐾𝑥𝑥

sin 𝐾𝐾𝑥𝑥𝐿𝐿 𝑝𝑝𝑡𝑡𝑡

(36)

(37)

𝑥𝑥′ = ⁄𝑝𝑝𝑥𝑥 𝑝𝑝0
𝑦𝑦′ = ⁄𝑝𝑝𝑦𝑦 𝑝𝑝0

These solutions can be written in the form of a matrix equation:

(38)𝑋𝑋 = 𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑋𝑋0 + 𝑚𝑚

𝑝𝑝𝑡𝑡 = 𝑝𝑝𝑡𝑡𝑡

With 𝑥𝑥 𝑠𝑠 in the above the longitudinal equation in Eq. (34) can be integrated to yield

−
ℎ
𝛽𝛽0
ℎ − 𝑘𝑘0
𝐾𝐾𝑥𝑥

𝐿𝐿 −
1
𝐾𝐾𝑥𝑥

sin 𝐾𝐾𝑥𝑥𝐿𝐿
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(39)

14

𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =

cos 𝐾𝐾𝑥𝑥𝐿𝐿
sin 𝐾𝐾𝑥𝑥𝐿𝐿

𝐾𝐾𝑥𝑥
0 0 0

ℎ
𝛽𝛽0

1 − cos 𝐾𝐾𝑥𝑥𝐿𝐿
𝐾𝐾𝑥𝑥

− 𝐾𝐾𝑥𝑥sin 𝐾𝐾𝑥𝑥𝐿𝐿 cos 𝐾𝐾𝑥𝑥𝐿𝐿 0 0 0
ℎ
𝛽𝛽0

sin 𝐾𝐾𝑥𝑥𝐿𝐿
𝐾𝐾𝑥𝑥

0 0 cosh 𝑘𝑘1𝐿𝐿
sinh 𝑘𝑘1𝐿𝐿

𝑘𝑘1
0 0

0 0 𝑘𝑘1sinh 𝑘𝑘1𝐿𝐿 cosh 𝑘𝑘1𝐿𝐿 0 0

−
ℎ
𝛽𝛽0

sin 𝐾𝐾𝑥𝑥𝐿𝐿
𝐾𝐾𝑥𝑥

−
ℎ
𝛽𝛽0

1 − cos 𝐾𝐾𝑥𝑥𝐿𝐿
𝐾𝐾𝑥𝑥

0 0 1
𝐿𝐿

𝛽𝛽02𝛾𝛾02
−
ℎ2

𝛽𝛽02

𝐿𝐿 − 1
𝐾𝐾𝑥𝑥

sin 𝐾𝐾𝑥𝑥𝐿𝐿

𝐾𝐾𝑥𝑥
0 0 0 0 0 1

where

and the vector 𝑚𝑚 which is the zeroth-order solution and 𝑋𝑋0 are given by

𝑚𝑚 =

ℎ − 𝑘𝑘0
1 − cos 𝐾𝐾𝑥𝑥𝐿𝐿

𝐾𝐾𝑥𝑥

ℎ − 𝑘𝑘0
sin 𝐾𝐾𝑥𝑥𝐿𝐿

𝐾𝐾𝑥𝑥
0
0

−
ℎ
𝛽𝛽0
ℎ − 𝑘𝑘0
𝐾𝐾𝑥𝑥

𝐿𝐿 −
1
𝐾𝐾𝑥𝑥

sin 𝐾𝐾𝑥𝑥𝐿𝐿

0

(40) 𝑋𝑋0 =

𝑥𝑥0
𝑥𝑥0′
𝑦𝑦0
𝑦𝑦0′
𝑧𝑧0
𝑝𝑝𝑡𝑡0

(41)
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Usually, the reference orbit curvature ℎ is adjusted to the reference momentum 𝑝𝑝0, by 
demanding horizontal kick to vanish [in Eq. (36)] under the condition 𝑥𝑥 = 0, 𝑝𝑝𝑥𝑥 = 0, and 
𝑝𝑝𝑡𝑡 = 0, i.e. 

ℎ =
1
𝜌𝜌 =

𝑞𝑞𝐵𝐵0
𝑝𝑝0

= 𝑘𝑘0

Then the Hamiltonian for linear motion in bending magnet, matched to the reference 
momentum 𝑝𝑝0 is 

𝐻𝐻 =
1
2

𝑝𝑝𝑥𝑥
𝑝𝑝0

2

+
1
2

𝑝𝑝𝑦𝑦
𝑝𝑝0

2

+
𝑝𝑝𝑡𝑡2

2𝛽𝛽02𝛾𝛾02
−
ℎ𝑝𝑝𝑡𝑡
𝛽𝛽0

𝑥𝑥 +
ℎ2

2
𝑥𝑥2 +

𝑘𝑘1
2 𝑥𝑥2 − 𝑦𝑦2 (43)

(42)

In this case the zeroth-order matrix 𝑚𝑚 is zero and

𝐾𝐾𝑥𝑥 = ℎ𝑘𝑘0 + 𝑘𝑘1 = ℎ2 + 𝑘𝑘1 =
1
𝜌𝜌2 +

𝐵𝐵𝐵
𝐵𝐵0𝜌𝜌

=
1 − 𝑛𝑛
𝜌𝜌2

(44)

where we have introduced the field index 

𝑛𝑛 = −
𝜌𝜌
𝐵𝐵0

𝜕𝜕𝐵𝐵𝑦𝑦
𝜕𝜕𝑥𝑥 = −𝜌𝜌2𝑘𝑘1 (45)

which is a dimensionless quantity. A dipole magnet with positive(negative) field index leads 
to the vertical focusing(defocusing).

In Eq. (44), 𝐵𝐵𝜌𝜌 = 𝑝𝑝
𝑞𝑞

is a quantity called the (magnetic) rigidity, which is a measure of the 

resistance of a particle to deflection by magnetic fields. In practical units, with the particle 
energy 𝐸𝐸 in GeV unit, the rigidity is given by

𝐵𝐵𝜌𝜌 𝑇𝑇 � 𝑚𝑚 ≈ 3.3356 𝐸𝐸[𝐺𝐺𝐺𝐺𝐺𝐺] (46)
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Dipole fringe fields and edge focusing

16

There can be a significant (and complicated) effect when a particle enters or leaves the 
region near the magnet boundary (edge). This region is called the fringe (field) region and 
should be taken into account properly. Let the vertical field at the main body be 𝐵𝐵𝑦𝑦 = 𝐵𝐵0.

where we neglect 𝐵𝐵𝑥𝑥 assuming an infinite magnet width and 𝐵𝐵𝑠𝑠 is required to satisfy 

Maxwell’s equation, 1 + ℎ𝑥𝑥 𝜕𝜕𝐵𝐵𝑠𝑠
𝜕𝜕𝑦𝑦

≈ 𝜕𝜕𝐵𝐵𝑠𝑠
𝜕𝜕𝑦𝑦

= 𝜕𝜕𝐵𝐵𝑦𝑦
𝜕𝜕𝑠𝑠

assuming ℎ𝑥𝑥 ≪ 1.

Assume the vertical field 𝐵𝐵𝑦𝑦 to vary linearly in the fringe region 0 < 𝑠𝑠 < 𝑑𝑑𝑓𝑓. Then the field 
in this region is given by 

𝐵𝐵𝑥𝑥 = 0, 𝐵𝐵𝑦𝑦=
𝑠𝑠
𝑑𝑑𝑓𝑓
𝐵𝐵0, 𝐵𝐵𝑠𝑠=

𝑦𝑦
𝑑𝑑𝑓𝑓
𝐵𝐵0 (47)

Let’s now assume the entrance (or exit) face of a dipole is at 𝑠𝑠 = 𝑠𝑠0, and the pole face is 
rotated  clockwise by 𝜓𝜓1 in the bending plane about the 𝑦𝑦 axis (see Figure in the next page).  
This has three effects to take into account: 1) The fringe field extends over a distance 𝐿𝐿 of 
the reference orbit (𝐿𝐿 > 𝑑𝑑𝑓𝑓)

𝐿𝐿 =
𝑑𝑑𝑓𝑓

cos 𝜓𝜓1 (48)

2) The field itself is rotated with the face of the magnet, so in the fringe fringe field region 
0 < 𝑠𝑠 < 𝐿𝐿,

𝐵𝐵𝑥𝑥 = −
𝑦𝑦
𝑑𝑑𝑓𝑓
𝐵𝐵0sin 𝜓𝜓1 = −

𝑦𝑦
𝐿𝐿 𝐵𝐵0tan 𝜓𝜓1, 𝐵𝐵𝑠𝑠=

𝑦𝑦
𝑑𝑑𝑓𝑓
𝐵𝐵0cos 𝜓𝜓1 =

𝑦𝑦
𝐿𝐿 𝐵𝐵0

(49)
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𝑞𝑞

main body

fringe region

𝜉𝜉

𝐵𝐵𝜉𝜉

𝐵𝐵𝑠𝑠

𝐵𝐵𝑥𝑥

𝜓𝜓1

𝐿𝐿

Note that if 𝜓𝜓1 → 0, Eq. (49) becomes Eq. (47) as it should be. 

3) Particles with different 𝑥𝑥 coordinates enter the main field of the magnet at different 𝑠𝑠
positions. A particle with coordinate 𝑥𝑥 travelling parallel to the reference orbit passes the 
entrance face at 𝑠𝑠 = 𝑠𝑠0 + 𝑥𝑥 tan𝜓𝜓1. This particle therefore sees a defit integrated vertical 
field 𝐵𝐵0𝑥𝑥 tan 𝜓𝜓1, so that in the region 0 < 𝑠𝑠 < 𝐿𝐿 leading up to the entrance of the dipole, 
the vertical field component is given by   

𝐵𝐵𝑦𝑦=
𝑠𝑠
𝐿𝐿 𝐵𝐵0 −

𝑥𝑥
𝐿𝐿 𝐵𝐵0tan 𝜓𝜓1 (50)

Eqs. (49) and (50) satisfy the Maxwell’s equations, 𝛻𝛻 � 𝑩𝑩 = 0 and 𝛻𝛻 × 𝑩𝑩 = 0.
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With the field component given by Eqs. (49) and (50) and the gauge  𝐴𝐴𝑥𝑥 = 0 we can 
obtain the vector potential from  𝑩𝑩 = 𝛻𝛻 × 𝑨𝑨

𝑨𝑨 = 0,
𝐵𝐵0
𝐿𝐿
𝑥𝑥𝑥𝑥,

𝐵𝐵0
2𝐿𝐿 𝑥𝑥2 − 𝑦𝑦2 tan 𝜓𝜓1 −

𝐵𝐵0
𝐿𝐿
𝑥𝑥𝑥𝑥 (51)

Let’s revisit the Hamiltonian given by Eq. (1):

𝐻𝐻 =
𝑝𝑝𝑡𝑡
𝛽𝛽0
− 1 + ℎ𝑥𝑥

1
𝛽𝛽0

+ 𝑝𝑝𝑡𝑡
2

−
𝜋𝜋𝑥𝑥
𝑝𝑝0

− 𝑎𝑎𝑥𝑥
2

−
𝜋𝜋𝑦𝑦
𝑝𝑝0

− 𝑎𝑎𝑦𝑦
2

−
1

𝛽𝛽02𝛾𝛾02
− 1 + ℎ𝑥𝑥 𝑎𝑎𝑠𝑠

and expanding the result to second order in canonical variables, neglecting the constant 
term we have 

𝒂𝒂 =
𝑞𝑞
𝑝𝑝0
𝑨𝑨 = 0,

𝑞𝑞
𝑝𝑝0
𝐵𝐵0
𝐿𝐿 𝑥𝑥𝑥𝑥,

𝑞𝑞
𝑝𝑝0
𝐵𝐵0
2𝐿𝐿 𝑥𝑥2 − 𝑦𝑦2 tan 𝜓𝜓1 −

𝑞𝑞
𝑝𝑝0
𝐵𝐵0
𝐿𝐿 𝑥𝑥𝑥𝑥

Inserting the normalized vector potential

(52)

𝐻𝐻 ≈
1
2

𝜋𝜋𝑥𝑥
𝑝𝑝0

2

+
1
2

𝜋𝜋𝑦𝑦
𝑝𝑝0

−
𝑞𝑞
𝑝𝑝0
𝐵𝐵0
𝐿𝐿 𝑥𝑥𝑥𝑥

2

− 1 + ℎ𝑥𝑥
𝑞𝑞𝐵𝐵0
2𝑝𝑝0𝐿𝐿

𝑥𝑥2 − 𝑦𝑦2 tan 𝜓𝜓1 −
𝑞𝑞
𝑝𝑝0
𝐵𝐵0
𝐿𝐿 𝑥𝑥𝑥𝑥 +

𝑝𝑝𝑡𝑡2

2𝛽𝛽02𝛾𝛾02

(53)≈
1
2

𝜋𝜋𝑥𝑥
𝑝𝑝0

2

+
1
2

𝜋𝜋𝑦𝑦
𝑝𝑝0

2

−
𝑞𝑞𝐵𝐵0
2𝑝𝑝0𝐿𝐿

𝑥𝑥2 − 𝑦𝑦2 tan 𝜓𝜓1 +
𝑞𝑞
𝑝𝑝0
𝐵𝐵0
𝐿𝐿 𝑥𝑥𝑥𝑥 +

𝑝𝑝𝑡𝑡2

2𝛽𝛽02𝛾𝛾02
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the Hamiltonian can be written as

19

Introducing the parameter
𝑘𝑘𝑓𝑓 =

𝑞𝑞
𝑝𝑝0
𝐵𝐵0
𝐿𝐿

tan 𝜓𝜓1

𝐻𝐻 ≈
1
2

𝜋𝜋𝑥𝑥
𝑝𝑝0

2

+
1
2

𝜋𝜋𝑦𝑦
𝑝𝑝0

2

−
𝑘𝑘𝑓𝑓
2 𝑥𝑥2 − 𝑦𝑦2 + 𝑘𝑘𝑓𝑓 cot𝜓𝜓1 𝑥𝑥𝑥𝑥 +

𝑝𝑝𝑡𝑡2

2𝛽𝛽02𝛾𝛾02

(54)

(55)

With this Hamiltonian we obtain the Hamilton’s equations
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝐻𝐻

𝜕𝜕( ⁄𝜋𝜋𝑥𝑥 𝑝𝑝0)
=
𝜋𝜋𝑥𝑥
𝑝𝑝0

,
𝑑𝑑( ⁄𝜋𝜋𝑥𝑥 𝑝𝑝0)

𝑑𝑑𝑑𝑑
= −

𝜕𝜕𝐻𝐻
𝜕𝜕𝑥𝑥

= 𝑘𝑘𝑓𝑓𝑥𝑥 − 𝑘𝑘𝑓𝑓 cot𝜓𝜓1 𝑠𝑠

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =

𝜕𝜕𝐻𝐻
𝜕𝜕( ⁄𝜋𝜋𝑦𝑦 𝑝𝑝0) =

𝜋𝜋𝑦𝑦
𝑝𝑝0

,
𝑑𝑑( ⁄𝜋𝜋𝑦𝑦 𝑝𝑝0)

𝑑𝑑𝑑𝑑 = −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑦𝑦 = −𝑘𝑘𝑓𝑓𝑦𝑦

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =

𝜕𝜕𝐻𝐻
𝜕𝜕𝑝𝑝𝑡𝑡

=
𝑝𝑝𝑡𝑡
𝛽𝛽02𝛾𝛾02

, 𝑑𝑑𝑝𝑝𝑡𝑡
𝑑𝑑𝑑𝑑 = −

𝜕𝜕𝐻𝐻
𝜕𝜕𝑧𝑧 = 0

The last two longitudinal equations can be easily integrated to yield

𝑧𝑧 𝐿𝐿 = 𝑧𝑧 0 +
𝐿𝐿

𝛽𝛽02𝛾𝛾02
𝑝𝑝𝑡𝑡(0)

(56)

𝑝𝑝𝑡𝑡 𝐿𝐿 = 𝑝𝑝𝑡𝑡(0)
(57)
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The four transverse equations can be combined to two second-order differential equations:

20

𝑥𝑥′′ − 𝑘𝑘𝑓𝑓𝑥𝑥 = −𝑘𝑘𝑓𝑓 cot𝜓𝜓1 𝑠𝑠

𝑦𝑦′′ + 𝑘𝑘𝑓𝑓𝑦𝑦 = 0
(58)

The solutions to the vertical equation are 

𝑦𝑦 𝐿𝐿 = 𝑦𝑦0cos 𝑘𝑘𝑓𝑓𝐿𝐿 + 𝑦𝑦0′
sin 𝑘𝑘𝑓𝑓𝐿𝐿

𝑘𝑘𝑓𝑓

𝑦𝑦𝑦 𝐿𝐿 = −𝑦𝑦0 𝑘𝑘𝑓𝑓sin 𝑘𝑘𝑓𝑓𝐿𝐿 + 𝑦𝑦0′cos 𝑘𝑘𝑓𝑓𝐿𝐿

The horizontal equation can be solved by variation of parameters method. The solutions 
are

𝑥𝑥 𝐿𝐿 = 𝑥𝑥0cosh 𝑘𝑘𝑓𝑓𝐿𝐿 + 𝑥𝑥0′
sinh 𝑘𝑘𝑓𝑓𝐿𝐿

𝑘𝑘𝑓𝑓
+ 𝐿𝐿 −

sinh 𝑘𝑘𝑓𝑓𝐿𝐿
𝑘𝑘𝑓𝑓

cot 𝜀𝜀

𝑥𝑥𝑥 𝐿𝐿 = 𝑥𝑥0 𝑘𝑘𝑓𝑓sinh 𝑘𝑘𝑓𝑓𝐿𝐿 + 𝑥𝑥0′ cosh 𝑘𝑘𝑓𝑓𝐿𝐿 + 1 − cosh 𝑘𝑘𝑓𝑓𝐿𝐿 cot 𝜀𝜀

𝜀𝜀 = 𝜓𝜓1

(59)

(60)

where we have changed the notation of the edge angle from 𝜓𝜓1 to 𝜀𝜀 following the 
convention adopted by many textbooks. 
Eqs. (57), (59) and (60) are the linear transfer map for a fringe region of length 𝐿𝐿 for a 
particle entering (or leaving) the magnet pole face at an angle 𝜀𝜀.
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For 𝐿𝐿 → 0, these become
𝑥𝑥 𝐿𝐿 = 𝑥𝑥0
𝑥𝑥′ 𝐿𝐿 = 𝑥𝑥0𝑘𝑘𝑓𝑓𝐿𝐿 + 𝑥𝑥0′ = 𝑥𝑥0𝑘𝑘𝑓𝑓tan𝜀𝜀 + 𝑥𝑥0′ = 𝑥𝑥0

tan𝜀𝜀
𝜌𝜌

+ 𝑥𝑥0′

𝑦𝑦 𝐿𝐿 = 𝑦𝑦0
𝑦𝑦′ 𝐿𝐿 = −𝑦𝑦0𝑘𝑘𝑓𝑓𝐿𝐿 + 𝑦𝑦0′ = −𝑦𝑦0𝑘𝑘𝑓𝑓tan𝜀𝜀 + 𝑦𝑦0′ = −𝑦𝑦0

tan𝜀𝜀
𝜌𝜌

+ 𝑦𝑦0′

𝑧𝑧 𝐿𝐿 = 𝑧𝑧0
𝑝𝑝𝑡𝑡 𝐿𝐿 = 𝑝𝑝𝑡𝑡0

(61)

𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =

1 0 0 0 0 0
tan𝜀𝜀
𝜌𝜌 1 0 0 0 0

0 0 1 0 0 0

0 0 −
tan𝜀𝜀
𝜌𝜌 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

=

1 0 0 0 0 0
1
𝑓𝑓𝑥𝑥

1 0 0 0 0

0 0 1 0 0 0

0 0 −
1
𝑓𝑓𝑦𝑦

1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

Thus, we have the matrix element for edge focusing 

(62)

Note that there is a vertical focusing and horizontal defocusing when the edge angle 𝜀𝜀 is 
positive and vertical defocusing and horizontal focusing when the edge angle is negative.

21

The fringe field extent 𝐿𝐿 depends on the magnet structure. To avoid such ambiguity, it 
is customary to take thin-lens approximation, i.e. 𝐿𝐿 → 0.

∵ Eq. (54)

𝑓𝑓𝑦𝑦

Thin lens

y1

𝜙𝜙𝑦𝑦 = 𝑦𝑦1
𝑦𝑦′ = 𝑦𝑦1′ − tan𝜙𝜙 = 𝑦𝑦1′ −

𝑦𝑦1
𝑓𝑓𝑦𝑦
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For an arbitrary wedge magnet with entrance angle 𝜀𝜀1 and exit angle 𝜀𝜀2, the linear map 
is given by

𝑀𝑀𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑀𝑀𝜀𝜀2𝑀𝑀𝑏𝑏𝑒𝑒𝑛𝑛𝑛𝑛𝑀𝑀𝜀𝜀1

𝑀𝑀𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =

1 0 0 0 0 0
tan𝜀𝜀2
𝜌𝜌

1 0 0 0 0

0 0 1 0 0 0

0 0 −
tan𝜀𝜀2
𝜌𝜌

1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

cos 𝐾𝐾𝑥𝑥𝐿𝐿
sin 𝐾𝐾𝑥𝑥𝐿𝐿

𝐾𝐾𝑥𝑥
0 0 0

ℎ
𝛽𝛽0

1 − cos 𝐾𝐾𝑥𝑥𝐿𝐿
𝐾𝐾𝑥𝑥

− 𝐾𝐾𝑥𝑥sin 𝐾𝐾𝑥𝑥𝐿𝐿 cos 𝐾𝐾𝑥𝑥𝐿𝐿 0 0 0
ℎ
𝛽𝛽0

sin 𝐾𝐾𝑥𝑥𝐿𝐿
𝐾𝐾𝑥𝑥

0 0 cosh 𝑘𝑘1𝐿𝐿
sinh 𝑘𝑘1𝐿𝐿

𝑘𝑘1
0 0

0 0 𝑘𝑘1sinh 𝑘𝑘1𝐿𝐿 cosh 𝑘𝑘1𝐿𝐿 0 0

−
ℎ
𝛽𝛽0

sin 𝐾𝐾𝑥𝑥𝐿𝐿
𝐾𝐾𝑥𝑥

−
ℎ
𝛽𝛽0

1 − cos 𝐾𝐾𝑥𝑥𝐿𝐿
𝐾𝐾𝑥𝑥

0 0 1
𝐿𝐿

𝛽𝛽02𝛾𝛾02
−
ℎ2

𝛽𝛽02

𝐿𝐿 − 1
𝐾𝐾𝑥𝑥

sin 𝐾𝐾𝑥𝑥𝐿𝐿

𝐾𝐾𝑥𝑥
0 0 0 0 0 1

×

1 0 0 0 0 0
tan𝜀𝜀1
𝜌𝜌

1 0 0 0 0

0 0 1 0 0 0

0 0 −
tan𝜀𝜀1
𝜌𝜌

1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

where 𝐾𝐾𝑥𝑥 = ℎ𝑘𝑘0 + 𝑘𝑘1 =
ℎ2 + 𝑘𝑘1 = 1

𝜌𝜌2
+ 𝐵𝐵′

𝐵𝐵0𝜌𝜌
= 1−𝑛𝑛

𝜌𝜌2

The combined matrix after the matrix multiplications is complicated in form and can be 
obtained with the help of MATHEMATICA.

(63)
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𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =

1 𝜌𝜌 sin 𝜃𝜃 0 0 0
𝜌𝜌 1 − cos 𝜃𝜃

𝛽𝛽

0 1 0 0 0
2tan𝜃𝜃2
𝛽𝛽

0 0 cos 𝜃𝜃 𝜌𝜌 sin 𝜃𝜃 0 0

0 0 −
sin 𝜃𝜃
𝜌𝜌

cos 𝜃𝜃 0 0

−
2tan𝜃𝜃2
𝛽𝛽 −

𝜌𝜌 1 − cos 𝜃𝜃
𝛽𝛽 0 0 1 −𝐿𝐿 +

𝜌𝜌 sin 𝜃𝜃
𝛽𝛽2

0 0 0 0 0 1

In the case of a uniform rectangular magnet of bending angle 𝜃𝜃 = ⁄𝐿𝐿 𝜌𝜌 , the entrance 
and exit angles are the same given by, 𝜀𝜀1= 𝜀𝜀2 = 𝜀𝜀 = 𝜃𝜃/2. The linear transfer map is

(64)

In the case of a uniform rectangular magnet, there is no focusing in the horizontal plane 
while there is a weak focusing in the vertical plane.
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3. Linear Maps II
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Quadrupole magnet

Inserting Eq. (65) into the Hamiltonian, Eq. (1), and letting ℎ → 0, we get the Hamiltonian 
for a normal quadrupole

The corresponding scaled magnetic field is given by 

𝑞𝑞
𝑝𝑝0
𝑩𝑩 = 𝑘𝑘1𝑦𝑦, 𝑘𝑘1𝑥𝑥, 0

(65)

The vector potential 𝐴𝐴𝑠𝑠 of a normal quadrupole magnet can be obtained from 𝑛𝑛 = 1 in 
Eqs. (24) and (25)

𝑞𝑞
𝑝𝑝0
𝑨𝑨 = 𝒂𝒂 = 0,0,−

1
2
𝑘𝑘1 𝑥𝑥2 − 𝑦𝑦2

(66)

𝑘𝑘1 = 𝑏𝑏1 =
𝑞𝑞
𝑝𝑝0
𝜕𝜕𝐵𝐵𝑦𝑦
𝜕𝜕𝑥𝑥 =

𝑞𝑞
𝑝𝑝0
𝜕𝜕𝐵𝐵𝑥𝑥
𝜕𝜕𝑦𝑦

𝐻𝐻 =
𝑝𝑝𝑡𝑡
𝛽𝛽0
−

1
𝛽𝛽0

+ 𝑝𝑝𝑡𝑡
2

−
𝑝𝑝𝑥𝑥
𝑝𝑝0

2

−
𝑝𝑝𝑦𝑦
𝑝𝑝0

2

−
1

𝛽𝛽02𝛾𝛾02
+

1
2 𝑘𝑘1

𝑥𝑥2 − 𝑦𝑦2 (67)

Expanding to second order and neglecting the constant term, we find

𝐻𝐻 ≈
1
2

𝑝𝑝𝑥𝑥
𝑝𝑝0

2

+
1
2

𝑝𝑝𝑦𝑦
𝑝𝑝0

2

+
𝑘𝑘1
2 𝑥𝑥2 − 𝑦𝑦2 +

𝑝𝑝𝑡𝑡2

2𝛽𝛽02𝛾𝛾02
(68)

quadrupole (focusing) strength
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝐻𝐻

𝜕𝜕( ⁄𝑝𝑝𝑥𝑥 𝑝𝑝0)
=
𝑝𝑝𝑥𝑥
𝑝𝑝0

,
𝑑𝑑( ⁄𝑝𝑝𝑥𝑥 𝑝𝑝0)

𝑑𝑑𝑑𝑑
= −

𝜕𝜕𝐻𝐻
𝜕𝜕𝑥𝑥

= −𝑘𝑘1𝑥𝑥

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝐻𝐻

𝜕𝜕( ⁄𝑝𝑝𝑦𝑦 𝑝𝑝0)
=
𝑝𝑝𝑦𝑦
𝑝𝑝0

,
𝑑𝑑( ⁄𝑝𝑝𝑦𝑦 𝑝𝑝0)

𝑑𝑑𝑑𝑑
= −

𝜕𝜕𝐻𝐻
𝜕𝜕𝑦𝑦

= 𝑘𝑘1𝑦𝑦

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝐻𝐻
𝜕𝜕𝑝𝑝𝑡𝑡

=
𝑝𝑝𝑡𝑡
𝛽𝛽02𝛾𝛾02

,
𝑑𝑑𝑝𝑝𝑡𝑡
𝑑𝑑𝑑𝑑

= −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑧𝑧

= 0

(69)

The Hamilton’s equations are

By similar method introduced before, we can find easily the linear map for a quadrupole 
of effective length 𝐿𝐿

𝑀𝑀𝑄𝑄 =

cos 𝑘𝑘1𝐿𝐿
1
𝑘𝑘1

sin 𝑘𝑘1𝐿𝐿 0 0 0 0

− 𝑘𝑘1sin 𝑘𝑘1𝐿𝐿 cos 𝑘𝑘1𝐿𝐿 0 0 0 0

0 0 cosh 𝑘𝑘1𝐿𝐿
1
𝑘𝑘1

sinh 𝑘𝑘1𝐿𝐿 0 0

0 0 𝑘𝑘1sinh 𝑘𝑘1𝐿𝐿 cosh 𝑘𝑘1𝐿𝐿 0 0

0 0 0 0 1
𝐿𝐿

𝛽𝛽02𝛾𝛾02
0 0 0 0 0 1

(70)
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If we take 𝐿𝐿 → 0 the map for the horizontal focusing quadrupole magnet in thin-lens 
approximation can be obtained

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑄𝑄 =

1 0 0 0 0 0

−
1
𝑓𝑓

1 0 0 0 0

0 0 1 0 0 0

0 0
1
𝑓𝑓

1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

where

(71)

𝑓𝑓 =
1
𝑘𝑘1𝐿𝐿

=
𝑝𝑝0
𝑞𝑞𝐿𝐿𝐵𝐵𝐵 (72)

is the focal length of a quadrupole magnet. 

26

Note that if a quadrupole magnet focuses a beam in the horizontal (vertical) plane then 
it defocuses in the vertical (horizontal) plane.  
To achieve focusing in both planes, quadrupole doublet or triplet is employed.
In the following we briefly analyze the quadrupole doublet. The case for triplet can be 
similarly applied.
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Let’s consider quadrupole doublet in the thin-lens approx. 

1
𝑓𝑓∗

=
1
𝑓𝑓1

+
1
𝑓𝑓2
−

𝑑𝑑
𝑓𝑓1𝑓𝑓2

Let 𝑓𝑓1 = −𝑓𝑓2 = 𝑓𝑓
(F-D)

𝑀𝑀𝐹𝐹𝐹𝐹 =
1 −

𝑑𝑑
𝑓𝑓 𝑑𝑑

−
𝑑𝑑
𝑓𝑓2 1 +

𝑑𝑑
𝑓𝑓

𝑀𝑀𝐹𝐹𝐹𝐹 = 1 𝑓𝑓
0 1

1 0

−
𝑑𝑑
𝑓𝑓2

1
1 −𝑓𝑓
0 1

1
𝑓𝑓∗

=
𝑑𝑑
𝑓𝑓2

> 0 focusing

𝑀𝑀 =
1 0

−
1
𝑓𝑓2

1
1 𝑑𝑑
0 1

1 0

−
1
𝑓𝑓1

1 =
1 −

𝑑𝑑
𝑓𝑓1

𝑑𝑑

−
1
𝑓𝑓∗ 1 −

𝑑𝑑
𝑓𝑓2where 

(73)

The transfer matrix in one plane is given by
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The matrix in the other plane (D-F) is

𝑀𝑀𝐷𝐷𝐷𝐷 =
1 +

𝑑𝑑
𝑓𝑓

𝑑𝑑

−
𝑑𝑑
𝑓𝑓2

1 −
𝑑𝑑
𝑓𝑓

= 1 −𝑓𝑓
0 1

1 0

−
𝑑𝑑
𝑓𝑓2

1
1 𝑓𝑓
0 1

focusing

28

Skew quadrupole magnet
A skew quadrupole is obtained from a normal quadrupole by 
rotating the magnet by 45◦ about the magnetic axis.

The first method follows just our standard procedure as before; get the vector potential for 
a skew quad and substitute it into the expanded Hamiltonian. The skew multipole vector 
potential components are given by the 𝑎𝑎𝑛𝑛 coefficients in the multipole expansion Eq. (24)

There are two methods to get the linear map for a skew quadupole. 

𝐴𝐴𝑠𝑠 = −
𝑝𝑝0
𝑞𝑞 𝑅𝑅𝑅𝑅�

𝑛𝑛=0

∞
1

𝑛𝑛 + 1 𝑏𝑏𝑛𝑛 + 𝑖𝑖𝑎𝑎𝑛𝑛 (𝑥𝑥 + 𝑖𝑖𝑖𝑖)𝑛𝑛+1

For a skew quadrupole, all coefficients are zero except for 𝑎𝑎1: 
𝑞𝑞
𝑝𝑝0
𝐴𝐴𝑠𝑠 = 𝑎𝑎1𝑥𝑥𝑥𝑥 ≡ −�𝑘𝑘1𝑥𝑥𝑥𝑥

�𝑘𝑘1 = −𝑎𝑎1= −
𝑞𝑞
𝑝𝑝0
𝜕𝜕𝐵𝐵𝑥𝑥
𝜕𝜕𝑥𝑥 =

𝑞𝑞
𝑝𝑝0
𝜕𝜕𝐵𝐵𝑦𝑦
𝜕𝜕𝑦𝑦
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where 𝑀𝑀𝑄𝑄 is the transfer matrix for a normal quadrupole given in Eq. (70) and 𝑅𝑅 𝜃𝜃 is the 
rotation matrix by an angle 𝜃𝜃 w. r. t. the magnet axis. 𝑅𝑅 𝜃𝜃 is given by

𝐻𝐻 =
𝑝𝑝𝑡𝑡
𝛽𝛽0
−

1
𝛽𝛽0

+ 𝑝𝑝𝑡𝑡
2

−
𝑝𝑝𝑥𝑥
𝑝𝑝0

2

−
𝑝𝑝𝑦𝑦
𝑝𝑝0

2

−
1

𝛽𝛽02𝛾𝛾02
+ �𝑘𝑘1𝑥𝑥𝑥𝑥

The Hamiltonian for a skew quadrupole magnet is then 

The Hamiltonian expanded to second order becomes

𝐻𝐻 ≈
1
2

𝑝𝑝𝑥𝑥
𝑝𝑝0

2

+
1
2

𝑝𝑝𝑦𝑦
𝑝𝑝0

2

+ �𝑘𝑘1𝑥𝑥𝑥𝑥 +
𝑝𝑝𝑡𝑡2

2𝛽𝛽02𝛾𝛾02

(74)

(75)

Note the term with 𝑥𝑥𝑥𝑥: this term leads to coupling of the horizontal and vertical motion. 
The skew quadrupole gives a horizontal kick proportional to the vertical offset of the 
particle, and vice-versa.
Hamilton’s equations with the second-order skew quadrupole Hamiltonian Eq. (75) may 
be solved as for the normal quadrupole. The procedure can be found in Wiedemann’s 
book (H. Wiedemann, Particle accelerator physics, Springer 4th ed). But here we shall take 
a simpler way. A skew quadrupole can be obtained from a normal quadrupole by rotating 
45 degree with respect to the longitudinal axis:

𝑀𝑀𝑆𝑆𝑆𝑆 = 𝑅𝑅
𝜋𝜋
4 𝑀𝑀𝑄𝑄𝑅𝑅 −

𝜋𝜋
4

(76)

29
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𝑅𝑅 𝜃𝜃 =

cos 𝜃𝜃 0 sin 𝜃𝜃 0 0 0
0 cos 𝜃𝜃 0 sin 𝜃𝜃 0 0

−sin 𝜃𝜃 0 cos 𝜃𝜃 0 0 0
0 −sin 𝜃𝜃 0 cos 𝜃𝜃 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(77)

Matrix multiplications in Eq. (76) lead to

𝑀𝑀𝑆𝑆𝑆𝑆 =
1
2

𝐶𝐶+
1
�𝑘𝑘1
𝑆𝑆+ 𝐶𝐶−

1
�𝑘𝑘1
𝑆𝑆− 0 0

− �𝑘𝑘1𝑆𝑆− 𝐶𝐶+ − �𝑘𝑘1𝑆𝑆+ 𝐶𝐶− 0 0

𝐶𝐶−
1
�𝑘𝑘1
𝑆𝑆− 𝐶𝐶+

1
�𝑘𝑘1
𝑆𝑆+ 0 0

− �𝑘𝑘1𝑆𝑆− 𝐶𝐶− − �𝑘𝑘1𝑆𝑆− 𝐶𝐶+ 0 0

0 0 0 0 1
𝐿𝐿

𝛽𝛽02𝛾𝛾02
0 0 0 0 0 1

30

(78)

where
𝐶𝐶± = cos �𝑘𝑘1𝐿𝐿 ± cosh �𝑘𝑘1𝐿𝐿

𝑆𝑆± = sin �𝑘𝑘1𝐿𝐿 ± sinh �𝑘𝑘1𝐿𝐿
�𝑘𝑘1 = −

𝑞𝑞
𝑝𝑝0
𝜕𝜕𝐵𝐵𝑥𝑥
𝜕𝜕𝑥𝑥 =

𝑞𝑞
𝑝𝑝0
𝜕𝜕𝐵𝐵𝑦𝑦
𝜕𝜕𝑦𝑦
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Skew quadrupoles are used to control the beam emittance (sizes) in synchrotrons and 
storage rings. In third-generation synchrotron radiation sources, skew quadrupoles control 
(minimize) the vertical emittance such that the beam brightness is maximized. In future 
light sources like 4GSR, skew quads can be used to make a round beam. 

Note: beam emittance is defined as the phase space area occupied by a beam divided by 𝜋𝜋. 

In PLS-2 storage ring, there are 24 skew quads distributed around the ring, which can 
control the horizontal and vertical coupling of emittance and as a result the vertical beam 
emittance is a few percent of the horizontal beam emittance. 

We shall discuss about the beam emittance in the next Lecture.
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RF cavity 
Let’s assume that an RF cavity is of cylindrical type of TM010 mode. Then the fields are of 
the form  (e.g. Jackson, Chap. 8)

𝐸𝐸𝑠𝑠 = − 𝛻𝛻Φ 𝑠𝑠 −
𝜕𝜕𝐴𝐴𝑠𝑠
𝜕𝜕𝑡𝑡

= −
𝜕𝜕𝐴𝐴𝑠𝑠
𝜕𝜕𝑡𝑡

= 𝐸𝐸0𝐽𝐽0(𝑘𝑘𝑘𝑘)sin(𝜔𝜔𝑅𝑅𝑅𝑅𝑡𝑡 + 𝜙𝜙0)

𝐵𝐵𝜃𝜃 = 𝛻𝛻 × 𝑨𝑨 𝜃𝜃 = −
𝜕𝜕𝐴𝐴𝑟𝑟
𝜕𝜕𝑠𝑠

−
𝜕𝜕𝐴𝐴𝑠𝑠
𝜕𝜕𝑟𝑟

= −
𝜕𝜕𝐴𝐴𝑠𝑠
𝜕𝜕𝑟𝑟

=
𝐸𝐸0
𝑐𝑐
𝐽𝐽1 𝑘𝑘𝑘𝑘 cos(𝜔𝜔𝑅𝑅𝑅𝑅𝑡𝑡 + 𝜙𝜙0)

where 𝑟𝑟 = 𝑥𝑥2 + 𝑦𝑦2. All other field components are zero. From Eq. (79), 
we find 

(79)

𝐴𝐴𝑠𝑠 = −�𝐸𝐸𝑠𝑠𝑑𝑑𝑑𝑑 =
𝐸𝐸0𝐽𝐽0(𝑘𝑘𝑘𝑘)
𝜔𝜔𝑅𝑅𝑅𝑅

cos(𝜔𝜔𝑅𝑅𝑅𝑅𝑡𝑡 + 𝜙𝜙0) (81)

with 𝐴𝐴𝑥𝑥 = 𝐴𝐴𝑦𝑦 = 0. Here 𝜔𝜔𝑅𝑅𝑅𝑅 = 𝑐𝑐𝑐𝑐 and 𝑘𝑘 = 𝑝𝑝01
𝑎𝑎

with 𝑝𝑝01 the first root 
of 𝐽𝐽0 𝑘𝑘𝑘𝑘 = 0 (bounbary condition) where 𝑎𝑎 is the cavity radius 
(𝑝𝑝01 ≈ 2.405). 

𝐻𝐻 =
𝑝𝑝𝑡𝑡
𝛽𝛽0
−

1
𝛽𝛽0

+ 𝑝𝑝𝑡𝑡
2

−
𝑝𝑝𝑥𝑥
𝑝𝑝0

2

−
𝑝𝑝𝑦𝑦
𝑝𝑝0

2

−
1

𝛽𝛽02𝛾𝛾02
−
𝑞𝑞
𝑝𝑝0

𝐸𝐸0
𝜔𝜔𝑅𝑅𝑅𝑅

𝐽𝐽0(𝑘𝑘𝑘𝑘)cos(
𝑘𝑘
𝛽𝛽0
𝑠𝑠 − 𝑘𝑘𝑘𝑘 + 𝜙𝜙0)

Then the Hamiltonian Eq. (1) for a RF cavity is given by

(82)
where we have changed the variable from time 𝑡𝑡 to 𝑧𝑧 = 𝑠𝑠

𝛽𝛽0
− 𝑐𝑐𝑐𝑐.

Note that this Hamiltonian for a RF cavity depends on the longitudinal variable 𝑠𝑠, which 
usually is not easy to integrate the equations of motion. For simplicity, we assume that it is 
possible to average the Hamiltonian over the length of the cavity: of the cavity

32

(80)
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𝐻𝐻 =
1
𝐿𝐿�−𝐿𝐿/2

𝐿𝐿/2
𝐻𝐻𝐻𝐻𝐻𝐻 (83)

𝐻𝐻 = 𝐻𝐻0 + 𝐻𝐻1
Let

𝐻𝐻1 = −
𝑞𝑞
𝑝𝑝0

𝐸𝐸0
𝜔𝜔𝑅𝑅𝑅𝑅

𝐽𝐽0 𝑘𝑘𝑘𝑘 cos
𝑘𝑘
𝛽𝛽0
𝑠𝑠 − 𝑘𝑘𝑘𝑘 + 𝜙𝜙0

where 𝐻𝐻1 is the term that depends on the longitudinal variable 𝑠𝑠, i.e. 

Averaging this we get

𝐻𝐻1 = −
1
𝐿𝐿
𝑞𝑞
𝑝𝑝0

𝐸𝐸0
𝜔𝜔𝑅𝑅𝑅𝑅

𝐽𝐽0(𝑘𝑘𝑘𝑘)�
−𝐿𝐿/2

𝐿𝐿/2
cos

𝑘𝑘
𝛽𝛽0
𝑠𝑠 − 𝑘𝑘𝑘𝑘 + 𝜙𝜙0 𝑑𝑑𝑑𝑑 = −

1
𝐿𝐿
𝑞𝑞
𝑝𝑝0

𝐸𝐸0
𝜔𝜔𝑅𝑅𝑅𝑅

𝐽𝐽0(𝑘𝑘𝑘𝑘)
2𝛽𝛽0
𝑘𝑘

sin
𝑘𝑘𝐿𝐿

2𝛽𝛽0
cos −𝑘𝑘𝑘𝑘 + 𝜙𝜙0

≡ −
𝛼𝛼
𝜋𝜋 𝐽𝐽0(𝑘𝑘𝑘𝑘)cos −𝑘𝑘𝑘𝑘 + 𝜙𝜙0where

𝛼𝛼 =
𝜋𝜋
𝐿𝐿
𝑞𝑞
𝑝𝑝0

𝐸𝐸0
𝜔𝜔𝑅𝑅𝑅𝑅

𝐽𝐽0(𝑘𝑘𝑘𝑘)
2𝛽𝛽0𝐸𝐸0
𝑐𝑐𝑘𝑘2 sin

𝑘𝑘𝑘𝑘
2𝛽𝛽0

≡
𝜋𝜋𝑞𝑞
𝑝𝑝0

𝐸𝐸0
𝜔𝜔𝑅𝑅𝑅𝑅

𝑇𝑇

Here 𝑇𝑇 is the transit-time factor (dimensionless) given by

𝑇𝑇 =
sin 𝑘𝑘𝑘𝑘

2𝛽𝛽0
𝑘𝑘𝑘𝑘

2𝛽𝛽0

(85)

which is a parameter introduced to take into account the variation in the electric field over 
the time taken for a particle to pass through the cavity.

(84)

𝐿𝐿
𝛽𝛽0𝜆𝜆𝑅𝑅𝑅𝑅
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𝐻𝐻 =
𝑝𝑝𝑡𝑡
𝛽𝛽0
−

1
𝛽𝛽0

+ 𝑝𝑝𝑡𝑡
2

−
𝑝𝑝𝑥𝑥
𝑝𝑝0

2

−
𝑝𝑝𝑦𝑦
𝑝𝑝0

2

−
1

𝛽𝛽02𝛾𝛾02
−
𝛼𝛼
𝜋𝜋 𝐽𝐽0(𝑘𝑘𝑘𝑘)cos(−𝑘𝑘𝑘𝑘 + 𝜙𝜙0) (88)

𝛼𝛼 =
𝑞𝑞𝑉𝑉0
𝑝𝑝0𝑐𝑐

(87)

Although the fields for TM010 mode do not depend on the length of the cavity, it is 
customary to choose the cavity length to 𝐿𝐿 = 𝜆𝜆𝑅𝑅𝑅𝑅

2
= 𝜋𝜋

𝑘𝑘
.

The cavity voltage 𝑉𝑉0 is defined in terms of the electric field amplitude 𝐸𝐸0, and the length 
of the cavity 𝐿𝐿 such that 𝑉𝑉0

𝐿𝐿
= 𝐸𝐸0𝑇𝑇 (86)

So

The averaged Hamiltonian then becomes

34

We now expand the Hamiltonian to second order in dynamical variables. Using

𝐽𝐽0 𝑥𝑥 = 1 −
𝑥𝑥2

4 +
𝑥𝑥4

6 −⋯ (89)

and dropping the constant term, we get the averaged and expanded Hamiltonian

𝐻𝐻 =
1
2

𝜋𝜋𝑥𝑥
𝑝𝑝0

2

+
1
2

𝜋𝜋𝑦𝑦
𝑝𝑝0

2

+
𝑝𝑝𝑡𝑡2

2𝛽𝛽02𝛾𝛾02
+
𝛼𝛼

4𝜋𝜋 𝑘𝑘
2 𝑥𝑥2 + 𝑦𝑦2 cos𝜙𝜙0 −

𝛼𝛼
𝜋𝜋 𝑘𝑘𝑘𝑘 sin𝜙𝜙0 +

𝛼𝛼
2𝜋𝜋 𝑘𝑘

2𝑧𝑧2cos𝜙𝜙0
(90)

𝑟𝑟 = 𝑥𝑥2 + 𝑦𝑦2
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The Hamilton’s equations are

(91)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝐻𝐻

𝜕𝜕( ⁄𝜋𝜋𝑥𝑥 𝑝𝑝0)
=
𝜋𝜋𝑥𝑥
𝑝𝑝0

=
𝑝𝑝𝑥𝑥
𝑝𝑝0

, 𝑑𝑑( ⁄𝜋𝜋𝑥𝑥 𝑝𝑝0)
𝑑𝑑𝑑𝑑

= −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑥𝑥

= −
𝛼𝛼

2𝜋𝜋
𝑘𝑘2cos𝜙𝜙0𝑥𝑥

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝐻𝐻

𝜕𝜕( ⁄𝜋𝜋𝑦𝑦 𝑝𝑝0)
=
𝜋𝜋𝑦𝑦
𝑝𝑝0

=
𝑝𝑝𝑦𝑦
𝑝𝑝0

,
𝑑𝑑( ⁄𝜋𝜋𝑦𝑦 𝑝𝑝0)

𝑑𝑑𝑑𝑑
= −

𝜕𝜕𝐻𝐻
𝜕𝜕𝑦𝑦

= −
𝛼𝛼

2𝜋𝜋
𝑘𝑘2cos𝜙𝜙0𝑦𝑦

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝐻𝐻
𝜕𝜕𝑝𝑝𝑡𝑡

=
𝑝𝑝𝑡𝑡
𝛽𝛽02𝛾𝛾02

,
𝑑𝑑𝑝𝑝𝑡𝑡
𝑑𝑑𝑑𝑑

= −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑧𝑧

= −
𝛼𝛼
𝜋𝜋
𝑘𝑘2cos𝜙𝜙0𝑧𝑧

The four transverse equations can be combined to yield

𝑥𝑥′′ = −
𝛼𝛼

2𝜋𝜋 𝑘𝑘
2cos𝜙𝜙0𝑥𝑥 ≡ −𝐾𝐾⊥2𝑥𝑥

𝑦𝑦′′ = −
𝛼𝛼

2𝜋𝜋 𝑘𝑘
2cos𝜙𝜙0𝑦𝑦 ≡ −𝐾𝐾⊥2𝑦𝑦

where 𝐾𝐾⊥2 =
𝛼𝛼

2𝜋𝜋 𝑘𝑘
2cos𝜙𝜙0

(92)

(93)

The two longitudinal equations in Eq. (91) lead to

𝑧𝑧′′ +𝐾𝐾∥2 𝑧𝑧 = −
1

𝛽𝛽02𝛾𝛾02
𝛼𝛼
𝜋𝜋 𝑘𝑘

2cos𝜙𝜙0 (94)

where 𝐾𝐾∥2 =
1

𝛽𝛽02𝛾𝛾02
𝛼𝛼
𝜋𝜋 𝑘𝑘

2cos𝜙𝜙0 (95)
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𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =

cos𝐾𝐾⊥𝐿𝐿
1
𝐾𝐾⊥

sin𝐾𝐾⊥𝐿𝐿 0 0 0 0

−𝐾𝐾⊥sin𝐾𝐾⊥𝐿𝐿 cos𝐾𝐾⊥𝐿𝐿 0 0 0 0

0 0 cos𝐾𝐾⊥𝐿𝐿
1
𝐾𝐾⊥

sin𝐾𝐾⊥𝐿𝐿 0 0

0 0 −𝐾𝐾⊥sin𝐾𝐾⊥𝐿𝐿 cos𝐾𝐾⊥𝐿𝐿 0 0

0 0 0 0 cos𝐾𝐾∥𝐿𝐿
1

𝛽𝛽02𝛾𝛾02𝐾𝐾∥
sin𝐾𝐾∥𝐿𝐿

0 0 0 0 −𝛽𝛽02𝛾𝛾02𝐾𝐾∥sin𝐾𝐾∥𝐿𝐿 cos𝐾𝐾∥𝐿𝐿

𝑋𝑋 = 𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑋𝑋0 + 𝑚𝑚

With general initial conditions, these equations can be solved easily and the result can 
be expressed in matrix form

(96)
where

(97)
and the zeroth-order solution is given by the vector 𝑚𝑚:

𝑚𝑚 =

0
0
0
0

2𝐿𝐿tan𝜙𝜙0
𝜋𝜋

sin2
𝐾𝐾∥𝐿𝐿

2

𝛼𝛼 sin𝜙𝜙0
sin𝐾𝐾∥𝐿𝐿
𝐾𝐾∥𝐿𝐿

(98)

36
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For small 𝛼𝛼 (i.e. high energy particle in a cavity with a weak field), 𝐾𝐾∥𝐿𝐿 ≪ 1 so in this case 
𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 becomes 

𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =

cos𝐾𝐾⊥𝐿𝐿
1
𝐾𝐾⊥

sin𝐾𝐾⊥𝐿𝐿 0 0 0 0

−𝐾𝐾⊥sin𝐾𝐾⊥𝐿𝐿 cos𝐾𝐾⊥𝐿𝐿 0 0 0 0

0 0 cos𝐾𝐾⊥𝐿𝐿
1
𝐾𝐾⊥

sin𝐾𝐾⊥𝐿𝐿 0 0

0 0 −𝐾𝐾⊥sin𝐾𝐾⊥𝐿𝐿 cos𝐾𝐾⊥𝐿𝐿 0 0

0 0 0 0 1
𝐿𝐿

𝛽𝛽02𝛾𝛾02

0 0 0 0 −
𝑞𝑞𝑉𝑉0
𝑝𝑝0𝑐𝑐

𝜋𝜋
𝐿𝐿

cos𝜙𝜙0 1

(99)

and all the zeroth-order transfer map 𝑚𝑚 for an RF cavity can be neglected.
In the thin-lens (𝐿𝐿 → 0 ) and weak field approximation, this becomes

𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≈

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

0 0 0 0 −
1
𝑓𝑓∥

1

1
𝑓𝑓∥

=
𝑞𝑞𝑉𝑉0
𝑝𝑝0𝑐𝑐

𝑘𝑘 cos𝜙𝜙0 =
𝑞𝑞𝑉𝑉0
𝑝𝑝0𝑐𝑐

𝜋𝜋
𝐿𝐿 cos𝜙𝜙0

(100)

where
(101)

Identity transform transversely 
and focusing longitudinally
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Appendex A.  A property of transfer matrices
Consider a linear second-order differential equation in the form of Hill’s equation with a 
first derivative term included (to be general)

𝑥𝑥" + 𝑓𝑓(𝑠𝑠)𝑥𝑥𝑥 + 𝑔𝑔(𝑠𝑠)𝑥𝑥 = 0
Let’s the two linearly independent solutions be 𝑥𝑥1 and 𝑥𝑥2. Then the Wronskian is  

𝑊𝑊 =
𝑥𝑥1 𝑥𝑥2
𝑥𝑥1′ 𝑥𝑥2′

Taking a derivative with respect to the independent variable 𝑠𝑠, we have

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑥𝑥1′ 𝑥𝑥2′

𝑥𝑥1′ 𝑥𝑥2′
+

𝑥𝑥1 𝑥𝑥2
𝑥𝑥1′′ 𝑥𝑥2′′

= −𝑥𝑥1 𝑓𝑓𝑥𝑥2′ + 𝑔𝑔𝑥𝑥2 + 𝑥𝑥2 𝑓𝑓𝑥𝑥1′ + 𝑔𝑔𝑥𝑥1 = −𝑓𝑓𝑓𝑓

Integrating over 𝑑𝑑𝑑𝑑, we get the solution for Wronskian

𝑊𝑊(𝑠𝑠) = 𝑊𝑊0𝑒𝑒
− ∫𝑠𝑠0

𝑠𝑠 𝑓𝑓 𝑠𝑠 𝑑𝑑𝑑𝑑

From this we see that if 𝑓𝑓 𝑠𝑠 = 0, then 𝑊𝑊 = 𝑊𝑊0 = constant  

(A1)

where 𝑊𝑊0 is a constant which is the Wronskian when 𝑠𝑠 = 𝑠𝑠0, i. e.𝑊𝑊0 = 𝑊𝑊(0).
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Next, the solutions to Eq. (A1) can be written in the form   

𝑥𝑥1,2 𝑠𝑠 = 𝑚𝑚11𝑥𝑥1,2 0 + 𝑚𝑚12𝑥𝑥1,2
′ (0)

𝑥𝑥1,2
′ (𝑠𝑠) = 𝑚𝑚21𝑥𝑥1,2 0 + 𝑚𝑚22𝑥𝑥1,2

′ (0)

This can be expressed in the form of a matrix equation:

𝑥𝑥1(𝑠𝑠) 𝑥𝑥2(𝑠𝑠)
𝑥𝑥1′(𝑠𝑠) 𝑥𝑥2′ (𝑠𝑠) =

𝑚𝑚11 𝑚𝑚12
𝑚𝑚21 𝑚𝑚22

𝑥𝑥1(0) 𝑥𝑥2(0)
𝑥𝑥1′(0) 𝑥𝑥2′ (0)

Taking determinants on both sides, we find

𝑊𝑊(𝑠𝑠) = det 𝑀𝑀 𝑊𝑊(0) where 𝑀𝑀 =
𝑚𝑚11 𝑚𝑚12
𝑚𝑚21 𝑚𝑚22

𝑊𝑊 0 = 𝑊𝑊(𝑠𝑠 = 0)and

Since 𝑊𝑊(𝑠𝑠) = 𝑊𝑊 0 when 𝑓𝑓 𝑠𝑠 = 0, we get

det 𝑀𝑀 = 1

We therefore proved that in the absence of a first derivative term, the determinant of the 
transfer matrix associated with the Hill’s equation is always one. This also holds for a 
general 6 × 6 transfer matrix.

(A2)

(A3)

Formal (mathematically rigorous) proof for the determinant of symplectic matrices being 
equal to +1 is beyond the scope of this Lecture and can be found elsewhere [e.g. D. Rim, 
Adv. in Dynam. Sys. and App. (ADSA), 12, 1, (2017) 15 - 20].
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Appendix B. Symplectic condition
Consider a column vector consisting of phase space coordinates.

𝜂𝜂 =

𝑥𝑥
𝑝𝑝𝑥𝑥
𝑦𝑦
𝑝𝑝𝑦𝑦
𝑧𝑧
𝛿𝛿

Introducing a 6 × 6 symplectic matrix defined as 

𝑆𝑆 =

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

then we can write the Hamilton’s equations in the following form

𝜂̇𝜂 = 𝑆𝑆
𝜕𝜕𝐻𝐻
𝜕𝜕𝜕𝜕 = 𝑆𝑆𝛻𝛻𝜂𝜂𝐻𝐻

(B1)

(B2)

(B3)

e.g. In 2D, 𝑥̇𝑥
𝑝̇𝑝𝑥𝑥

= 0 1
−1 0

𝜕𝜕𝐻𝐻
𝜕𝜕𝑥𝑥
𝜕𝜕𝐻𝐻
𝜕𝜕𝑝𝑝𝑥𝑥

(B4)

block-diagonal

𝜂̇𝜂 =
𝑑𝑑𝜂𝜂
𝑑𝑑𝑑𝑑
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Let’s now introduce a general canonical transformation 𝜁𝜁 that does not include time 
explicitly. General transformation can be expressed by 𝜁𝜁 = 𝜁𝜁 𝜂𝜂 . The Jacobian matrix of 
transformation 𝜁𝜁 is

𝑀𝑀𝑖𝑖𝑖𝑖 =
𝜕𝜕(𝑄𝑄,𝑃𝑃)
𝜕𝜕(𝑞𝑞, 𝑝𝑝)

=
𝜕𝜕𝜁𝜁𝑖𝑖
𝜕𝜕𝜂𝜂𝑗𝑗

After the transformation, the equation of motion takes the form
̇𝜁𝜁 = 𝑀𝑀𝜂̇𝜂

and
̇𝜁𝜁 = 𝑀𝑀𝜂̇𝜂 = 𝑀𝑀𝑆𝑆 𝑀𝑀𝑇𝑇𝛻𝛻𝜁𝜁𝐻𝐻 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝛻𝛻𝜁𝜁𝐻𝐻 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇 𝜕𝜕𝐻𝐻

𝜕𝜕𝜕𝜕

𝜁𝜁 =

𝑋𝑋
𝑃𝑃𝑥𝑥
𝑌𝑌
𝑃𝑃𝑦𝑦
𝑍𝑍
Δ

So 𝜂̇𝜂 = 𝑆𝑆
𝜕𝜕𝐻𝐻
𝜕𝜕𝜕𝜕

= 𝑆𝑆 𝑀𝑀𝑇𝑇𝛻𝛻𝜁𝜁𝐻𝐻

From this we have an important observation: If and only if Jacobian matrix 𝑀𝑀 satisfies the 
symplectic condition, the canonical form using the same Hamiltonian is preserved. In that 
case, 𝜁𝜁 and 𝑀𝑀 are called the symplectic transformation and symplectic matrix respectively.

If 𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇 = 𝑆𝑆
the new canonical variables preserve the form of the Hamilton’s equations:  ̇𝜁𝜁 = 𝑆𝑆

𝜕𝜕𝐻𝐻
𝜕𝜕𝜕𝜕

(B5)

Eq. (B5) is called the symplectic condition. It also holds in the form of 𝑀𝑀𝑇𝑇𝑆𝑆𝑀𝑀 = 𝑆𝑆

∵ 𝜂̇𝜂𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑖𝑖
𝜕𝜕𝐻𝐻
𝜕𝜕𝜂𝜂𝑗𝑗

= 𝑆𝑆𝑖𝑖𝑖𝑖
𝜕𝜕𝜁𝜁𝑗𝑗
𝜕𝜕𝜂𝜂𝑖𝑖

𝜕𝜕𝐻𝐻
𝜕𝜕𝜁𝜁𝑗𝑗

= 𝑆𝑆𝑖𝑖𝑖𝑖𝑀𝑀𝑗𝑗𝑗𝑗
𝜕𝜕𝐻𝐻
𝜕𝜕𝜁𝜁𝑗𝑗
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Symplectic condition is useful:

It provides a simple method to check accuracy of numerical tracking of particle motion.
It avoids accumulation of numerical errors in long term particle tracking.
It can be used to check the validity of transfer matrices.

Note that det(𝑀𝑀) = 1 is a necessary condition for symplectic matrix but not a sufficient 
condition. So the determinant of a symplectic matrix is always one, but not vice versa.

The symplectic condition is much stronger condition than det(𝑀𝑀) = 1.
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