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There are several possible approaches to study the motion of particles in classical 
mechanics; Newton-Lorentz equation, Lagrange equation, and Hamilton’s equations, etc. 

In this Lecture, we shall adopt Hamiltonian method, which has an advantage of preserving 
the Liouville’s theorem when changing variables to a new set of variables. This is 
particularly important when one investigates many-turn dynamics in circular particle 
accelerators such as synchrotron and storage ring.

In accelerator physics, these three approaches are all used in one way or another. 

Depending on the problem under consideration, one method is more convenient or 
powerful than the others. 

For nonlinear dynamics problem, Hamiltonian dynamics is in particular a power tool to 
get further insight of the behavior of particle’s motion. 

Even for linear beam dynamics, use of Hamiltonian can be advantageous as we can see 
soon.
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Principle of least action
The action (or action integral) 𝑆𝑆 is an integral of the function 𝐿𝐿 along the trajectory

𝑆𝑆 = �
𝑡𝑡1

𝑡𝑡2
𝐿𝐿 𝑞𝑞, 𝑞̇𝑞, 𝑡𝑡 𝑑𝑑𝑑𝑑

where the function 𝐿𝐿 𝑞𝑞, 𝑞̇𝑞, 𝑡𝑡 is a scalar quantity and called the 
Lagrangian, which is the key function in Lagrangian mechanics. 
Here 𝑞𝑞 is called the generalized coordinate and 𝑞̇𝑞 (= 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑) the 
generalized velocity.
The principle of least action or Hamilton's principle holds that 
the system evolves in such a way that the action 𝑆𝑆 is stationary. 
It can be shown that the Euler-Lagrange equation defines a path 
for which

𝛿𝛿𝑆𝑆 = 𝛿𝛿 �
𝑡𝑡1

𝑡𝑡2
𝐿𝐿 𝑞𝑞, 𝑞̇𝑞, 𝑡𝑡 𝑑𝑑𝑑𝑑 = 0

By taking variations on the Lagrangian one can easily derive the Euler-Lagrange equation 
(or Lagrange equation): 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝜕𝜕𝐿𝐿
𝜕𝜕𝑞̇𝑞

−
𝜕𝜕𝐿𝐿
𝜕𝜕𝑞𝑞 = 0

𝜋𝜋 ≡
𝜕𝜕𝐿𝐿
𝜕𝜕𝑞̇𝑞Here, 𝜕𝜕𝐿𝐿

𝜕𝜕𝑞̇𝑞
is called the generalized momentum:

(1)

(2)

(3)

(4)

Euler-Lagrange equation 
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In the case of a conservative force the Lagrangian is the difference of the kinetic 
energy 𝑇𝑇 𝑞𝑞, 𝑞̇𝑞 and potential energy 𝑈𝑈(𝑞𝑞):

𝐿𝐿 𝑞𝑞, 𝑞̇𝑞 = 𝑇𝑇 𝑞𝑞, 𝑞̇𝑞 − 𝑈𝑈(𝑞𝑞)
And the generalized force is defined as

𝐹𝐹 =
𝜕𝜕𝐿𝐿
𝜕𝜕𝑞𝑞

Lack of uniqueness of the Lagrangian
Suppose for example there is a new Lagrangian �𝐿𝐿 𝑞𝑞, 𝑞̇𝑞, 𝑡𝑡 given by

�𝐿𝐿 𝑞𝑞, 𝑞̇𝑞, 𝑡𝑡 = 𝐿𝐿 𝑞𝑞, 𝑞̇𝑞, 𝑡𝑡 +
𝑑𝑑
𝑑𝑑𝑑𝑑
𝐺𝐺(𝑞𝑞, 𝑡𝑡)

Then the action principle is

𝑆̃𝑆 𝑞𝑞(𝑡𝑡) = �
𝑡𝑡𝑎𝑎

𝑡𝑡𝑏𝑏
�𝐿𝐿 𝑞𝑞, 𝑞̇𝑞 𝑑𝑑𝑑𝑑 = 𝑆𝑆 𝑞𝑞(𝑡𝑡) + 𝐺𝐺 𝑞𝑞𝑏𝑏, 𝑡𝑡𝑏𝑏 − 𝐺𝐺(𝑞𝑞𝑎𝑎 , 𝑡𝑡𝑎𝑎)

Thus δ𝑆̃𝑆 = δ𝑆𝑆. This means that 𝐿𝐿 and �𝐿𝐿 result in the same equations of motion.
Hence, the equations of motion are invariant under a shift of 𝐿𝐿 by a total time derivative of
a function of coordinates and time, 𝐺𝐺(𝑞𝑞, 𝑡𝑡). This is the basis of the canonical 
transformation and 𝐺𝐺 is called the generating function.

(5)

(6)

𝛿𝛿𝑆̃𝑆 = 𝛿𝛿𝑆𝑆 + 𝛿𝛿𝐺𝐺 𝑞𝑞𝑏𝑏, 𝑡𝑡𝑏𝑏 − 𝛿𝛿𝐺𝐺(𝑞𝑞𝑎𝑎 , 𝑡𝑡𝑎𝑎)

But 𝛿𝛿𝐺𝐺 =
𝜕𝜕𝐺𝐺
𝜕𝜕𝑞𝑞 𝛿𝛿𝑞𝑞 +

𝜕𝜕𝐺𝐺
𝜕𝜕𝑡𝑡 𝛿𝛿𝑡𝑡 =

𝜕𝜕𝐺𝐺
𝜕𝜕𝑞𝑞 𝛿𝛿𝑞𝑞

and the endpoints are fixed, 𝛿𝛿𝑞𝑞𝑎𝑎 = 𝛿𝛿𝑞𝑞𝑏𝑏 = 0, so 𝛿𝛿𝐺𝐺 𝑞𝑞𝑏𝑏, 𝑡𝑡𝑏𝑏 = 𝛿𝛿𝐺𝐺 𝑞𝑞𝑎𝑎 , 𝑡𝑡𝑎𝑎 = 0.

∵ 𝛿𝛿𝑡𝑡 = 0
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Lagrangian of a charged particle under electromagnetic fields
The relativistic Lagrangian of a charged particle under electromagnetic fields is given by 
(e.g. Jackson §12.1)

𝐿𝐿 = −
𝑚𝑚𝑐𝑐2

𝛾𝛾 + 𝑞𝑞𝒗𝒗 � 𝑨𝑨 𝒓𝒓, 𝑡𝑡 − 𝑞𝑞Φ 𝒓𝒓, 𝑡𝑡 = −𝑚𝑚𝑐𝑐2 1 −
𝒓̇𝒓
𝑐𝑐

2

− 𝑞𝑞 Φ − 𝒓̇𝒓 � 𝑨𝑨

The conjugate canonical momenta are

(7)

(8)𝝅𝝅𝑘𝑘 =
𝜕𝜕𝐿𝐿
𝜕𝜕𝑞̇𝑞𝑘𝑘

=
𝜕𝜕𝐿𝐿
𝜕𝜕𝒓̇𝒓𝑘𝑘

= 𝛾𝛾𝑚𝑚𝒓̇𝒓𝑘𝑘 + 𝑞𝑞𝑨𝑨𝑘𝑘 = 𝒑𝒑𝑘𝑘 + 𝑞𝑞𝑨𝑨𝑘𝑘 (𝑘𝑘 = 1,2,3,⋯ ,𝑛𝑛)

𝑚𝑚 : rest mass

𝑛𝑛 : number of generalized coordinates (i.e. number of degrees of freedom)

Φ : (electric) scalar potential, 𝑨𝑨 : vector potential,  

Substituting Eq. (7) into the Euler-Lagrange equation, Eq. (3), one can obtain the Lorentz 
equation as is shown in the below:

0 =
𝑑𝑑
𝑑𝑑𝑑𝑑
𝜕𝜕𝐿𝐿
𝜕𝜕𝑞̇𝑞

−
𝜕𝜕𝐿𝐿
𝜕𝜕𝑞𝑞

→ 0 =
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑚𝑚𝒓̇𝒓
1 − 𝒓̇𝒓/𝒄𝒄 2

+ 𝑞𝑞
𝑑𝑑𝑨𝑨
𝑑𝑑𝑑𝑑 + 𝛻𝛻 Φ − 𝒓̇𝒓 � 𝑨𝑨

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑚𝑚𝒓̇𝒓
1 − 𝒓̇𝒓/𝒄𝒄 2

=
𝑑𝑑
𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝛾𝛾𝜷𝜷 = 𝑭𝑭 = −𝑞𝑞

𝑑𝑑𝑨𝑨
𝑑𝑑𝑑𝑑 + 𝛻𝛻 Φ − 𝒓̇𝒓 � 𝑨𝑨

𝒑𝒑𝑘𝑘 = 𝛾𝛾𝑚𝑚𝒓̇𝒓𝑘𝑘 = 𝛾𝛾𝜷𝜷𝑘𝑘𝑚𝑚𝑚𝑚 mechanical momenta 

𝑞𝑞 is a charge 
not the 
generalized 
coord.
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𝑭𝑭 = −𝑞𝑞
𝑑𝑑𝑨𝑨
𝑑𝑑𝑑𝑑

+ 𝛻𝛻 Φ − 𝒓̇𝒓 � 𝑨𝑨 = −𝑞𝑞
𝜕𝜕𝑨𝑨
𝜕𝜕𝑡𝑡

+ 𝒓̇𝒓 � 𝛻𝛻 𝑨𝑨 + 𝛻𝛻Φ − 𝛻𝛻 𝒓̇𝒓 � 𝑨𝑨

= −𝑞𝑞
𝜕𝜕𝑨𝑨
𝜕𝜕𝑡𝑡

+ 𝒓̇𝒓 � 𝛻𝛻 𝑨𝑨 + 𝛻𝛻Φ− 𝒓̇𝒓 � 𝛻𝛻 𝑨𝑨 + 𝒓̇𝒓 × 𝛻𝛻 × 𝑨𝑨

= −𝑞𝑞
𝜕𝜕𝑨𝑨
𝜕𝜕𝑡𝑡

+ 𝛻𝛻Φ− 𝒓̇𝒓 × 𝛻𝛻 × 𝑨𝑨 = −𝑞𝑞 𝛻𝛻Φ +
𝜕𝜕𝑨𝑨
𝜕𝜕𝑡𝑡

− 𝒓̇𝒓 × 𝛻𝛻 × 𝑨𝑨

With 

𝑬𝑬 = −𝛻𝛻Φ−
𝜕𝜕𝑨𝑨
𝜕𝜕𝑡𝑡

𝑩𝑩 = 𝛻𝛻 × 𝑨𝑨
we get the Lorentz equation as expected:

𝑭𝑭 = 𝑞𝑞 𝑬𝑬 + 𝒓̇𝒓 × 𝑩𝑩 = 𝑞𝑞 𝑬𝑬 + 𝒗𝒗 × 𝑩𝑩
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Hamiltonian mechanics

7

The passage from one set of independent variables to another can be affected by means 
of what is called in mathematics Legendre's transformation. In the present case this 
transformation is as follows. 

The formulation of the laws of mechanics in terms of the Lagrangian, and of Lagrange's 
equations derived from it, presupposes that the mechanical state of a system is described 
by specifying its generalized co-ordinates 𝑞𝑞𝑘𝑘 and generalized velocities 𝑞̇𝑞𝑘𝑘. However, this is 
not the only possible way of description. A number of advantages, especially in the study 
of certain general problems of mechanics, attach to a description in terms of the 
generalized coordinates 𝑞𝑞𝑘𝑘 and generalized momenta 𝜋𝜋𝑘𝑘 of the system. 

𝑑𝑑𝑑𝑑(𝑞𝑞𝑘𝑘 , 𝑞̇𝑞𝑘𝑘) = �
𝑘𝑘

𝜕𝜕𝐿𝐿
𝜕𝜕𝑞𝑞𝑘𝑘

𝑑𝑑𝑞𝑞𝑘𝑘 + �
𝑘𝑘

𝜕𝜕𝐿𝐿
𝜕𝜕𝑞̇𝑞𝑘𝑘

𝑑𝑑𝑞̇𝑞𝑘𝑘 = �𝜋̇𝜋𝑘𝑘𝑑𝑑𝑞𝑞𝑘𝑘 + �𝜋𝜋𝑘𝑘𝑑𝑑𝑞̇𝑞𝑘𝑘

�𝜋𝜋𝑘𝑘𝑑𝑑𝑞̇𝑞𝑘𝑘 = 𝑑𝑑 �𝜋𝜋𝑘𝑘𝑞̇𝑞𝑘𝑘 −�𝑞̇𝑞𝑘𝑘𝑑𝑑𝜋𝜋𝑘𝑘

Writing the last term on the r. h. s. in the form

we obtain

𝑑𝑑 �𝜋𝜋𝑘𝑘𝑞̇𝑞𝑘𝑘 − 𝐿𝐿 = −�𝜋̇𝜋𝑘𝑘𝑑𝑑𝑞𝑞𝑘𝑘 + �𝑞̇𝑞𝑘𝑘𝑑𝑑𝜋𝜋𝑘𝑘 (9)

The total differential of the Lagrangian as a function of generalized coordinates and 
generalized velocities is
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Hamiltonian and Hamilton’s equations

𝑞̇𝑞𝑘𝑘 =
𝑑𝑑𝑞𝑞𝑘𝑘
𝑑𝑑𝑑𝑑 =

𝜕𝜕𝐻𝐻
𝜕𝜕𝜋𝜋𝑘𝑘

𝜋̇𝜋𝑘𝑘 =
𝑑𝑑𝜋𝜋𝑘𝑘
𝑑𝑑𝑑𝑑 = −

𝜕𝜕𝐻𝐻
𝜕𝜕𝑞𝑞𝑘𝑘

Let’s define the Hamiltonian:

𝐻𝐻(𝜋𝜋, 𝑞𝑞, 𝑡𝑡) = �
𝑘𝑘

𝜋𝜋𝑘𝑘 𝑞̇𝑞𝑘𝑘 − 𝐿𝐿

𝐻𝐻 = 𝑚𝑚2𝑐𝑐4 + 𝑝𝑝2𝑐𝑐2 + 𝑞𝑞Φ
or

= 𝝅𝝅 � 𝒗𝒗 − 𝐿𝐿 = 𝛾𝛾𝛾𝛾𝑐𝑐2 + 𝑞𝑞Φ = 𝑐𝑐 𝑚𝑚2𝑐𝑐2 + 𝝅𝝅 − 𝑞𝑞𝑨𝑨 2 + 𝑞𝑞Φ

(10)

(11)

(12)

From the equation in differentials, Eq. (9)

𝑑𝑑𝐻𝐻 = −�𝜋̇𝜋𝑘𝑘𝑑𝑑𝑞𝑞𝑘𝑘 + �𝑞̇𝑞𝑘𝑘𝑑𝑑𝜋𝜋𝑘𝑘

we get Hamilton’s equations :

The total time derivative of the Hamiltonian is

𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑 =

𝜕𝜕𝐻𝐻
𝜕𝜕𝑡𝑡

+ �
𝜕𝜕𝐻𝐻
𝜕𝜕𝑞𝑞𝑘𝑘

𝑞̇𝑞𝑘𝑘 + �
𝜕𝜕𝐻𝐻
𝜕𝜕𝜋𝜋𝑘𝑘

𝜋̇𝜋𝑘𝑘 =
𝜕𝜕𝐻𝐻
𝜕𝜕𝑡𝑡

where the last term on the r. h. s. follows by applying the Hamilton’s equations. In 
particular, if the Hamiltonian does not depend explicitly on time, then 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 0, and 
we have the law of conservation of energy.

8

: total energy

and

[∵ Eqs. (7), (8)]
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general (non-ideal) particle trajectory

𝒆𝒆𝑥𝑥

𝒆𝒆𝑦𝑦

𝒆𝒆𝑠𝑠

𝜌𝜌

𝑥𝑥

𝑦𝑦

ideal particle orbit (reference orbit) along 𝑠𝑠

𝒓𝒓(𝑠𝑠)𝒓𝒓𝟎𝟎(𝑠𝑠)

𝒓𝒓 = 𝒓𝒓0 + 𝑥𝑥𝒆𝒆𝑥𝑥 + 𝑦𝑦𝒆𝒆𝑦𝑦

𝒓̇𝒓 = 𝒓̇𝒓0 + 𝑥̇𝑥𝒆𝒆𝑥𝑥 + 𝑥𝑥𝒆̇𝒆𝑥𝑥 + 𝑦̇𝑦𝒆𝒆𝑦𝑦 + 𝑦𝑦𝒆̇𝒆𝑦𝑦
(� ≡

𝑑𝑑
𝑑𝑑𝑑𝑑

)
position vector of the 
the reference particle

position vector of a non-ideal particle

The coordinates (𝑥𝑥,𝑦𝑦, 𝑠𝑠) specifies a particle’s position in right-handed coordinate system.

0
assume no torsion (planar orbit) then

𝒆𝒆𝑠𝑠 =
𝑑𝑑𝒓𝒓0(𝑠𝑠)
𝑑𝑑𝑑𝑑 : unit tangent vector

𝒆̇𝒆𝑦𝑦 = 0

Curved coordinates (𝑥𝑥,𝑦𝑦, 𝑠𝑠) in circular accelerators

unit tangent vector

unit binormal vector

moving particle

unit normal vector

(𝒆𝒆𝑥𝑥, 𝒆𝒆𝒚𝒚, 𝒆𝒆𝑠𝑠) : unit vectors

position reference

9

Let’s now apply the Lagrangian and Hamiltonian to circular particle accelerators. 

𝑠𝑠 is a coordinate along the reference particle’s orbit (blue curve); it is in general curved. 
We want to obtain equations of motion for a non-ideal particle (red curve).
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Changing independent variable from 𝑡𝑡 to 𝑠𝑠
Assuming that the longitudinal coordinate 𝑠𝑠 is a monotonically increasing function of 
time 𝑡𝑡, we can change 𝑡𝑡 by 𝑠𝑠. 
This is for the convenience of accelerator beam treatment.
The new Lagrangian will be obtained through exchange of integral variable of the 
principle of least action from 𝑡𝑡 to 𝑠𝑠 :

0 = 𝛿𝛿 �𝐿𝐿0 𝒓𝒓, 𝒓̇𝒓 𝑑𝑑𝑑𝑑 = 𝛿𝛿 �𝐿𝐿0 𝒓𝒓,
𝑑𝑑𝒓𝒓
𝑑𝑑𝑑𝑑

𝑑𝑑𝑠𝑠
𝑑𝑑𝑡𝑡

𝑑𝑑𝑡𝑡
𝑑𝑑𝑠𝑠
𝑑𝑑𝑠𝑠 = 𝛿𝛿 �𝐿𝐿0 𝒓𝒓,

𝒓𝒓′
𝑡𝑡𝑡

𝑡𝑡𝑡𝑑𝑑𝑑𝑑 ≡ 𝛿𝛿�𝐿𝐿 𝒓𝒓,
𝒓𝒓𝒓
𝑡𝑡𝑡

𝑑𝑑𝑑𝑑

The new Lagrangian is then given by

where we have changed our previous Lagrangian to 𝐿𝐿0 to indicate that its independent 
variable is time 𝑡𝑡. The new Lagrangian 𝐿𝐿 = 𝐿𝐿0𝑡𝑡′ is with independent variable 𝑠𝑠.

𝐿𝐿 = 𝐿𝐿0 𝒓𝒓,
𝒓𝒓𝒓
𝑡𝑡𝑡 𝑡𝑡′ = −𝑚𝑚𝑐𝑐2 1 −

𝒓𝒓𝒓
𝑐𝑐𝑡𝑡𝑡

2

− 𝑞𝑞 Φ −
𝒓𝒓𝒓
𝑡𝑡𝑡 � 𝑨𝑨 𝑡𝑡𝑡

𝐿𝐿(𝒓𝒓′; 𝑠𝑠) = −𝑚𝑚𝑐𝑐 𝑐𝑐2𝑡𝑡′2 − 𝒓𝒓′2 − 𝑞𝑞 Φ𝑡𝑡𝑡 − 𝒓𝒓𝒓 � 𝑨𝑨

or

𝑡𝑡′ =
𝑑𝑑𝑡𝑡
𝑑𝑑𝑠𝑠

(13)

10

where

∵ 𝒓̇𝒓 =
𝑑𝑑𝒓𝒓
𝑑𝑑𝑡𝑡 =

𝑑𝑑𝒓𝒓
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =

𝒓𝒓𝒓
𝑡𝑡𝑡

𝒓𝒓𝒓 =
𝑑𝑑𝒓𝒓
𝑑𝑑𝑑𝑑

and
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Curved coordinate system: Fresnet-Serret formula

The Frenet-Serret formula relates the derivatives of the tangent (𝒆𝒆𝑠𝑠), normal (𝒆𝒆𝑥𝑥), and 
binormal (𝒆𝒆𝑦𝑦) unit vectors, which are given in terms of each other:

We shall not prove the Fresnet-Serret formula (see e.g. Wikipedia) but just state the result.

𝒆𝒆𝑠𝑠 =
𝑑𝑑
𝑑𝑑𝑑𝑑
𝒓𝒓0 𝑠𝑠 = 𝒓𝒓0′ (𝑠𝑠)

𝒆𝒆𝑥𝑥′ = −𝜏𝜏𝒆𝒆𝑦𝑦 + 𝜅𝜅𝒆𝒆𝑠𝑠

11

𝒆𝒆𝑦𝑦′ = 𝜏𝜏𝒆𝒆𝑥𝑥
𝒆𝒆𝑠𝑠′ = −𝜅𝜅𝒆𝒆𝑥𝑥

𝜅𝜅 : curvature, inverse of radius

𝜏𝜏: torsion; zero for planar orbit as is the case for 
most of the existing accelerators

(14)

By applying the Frenet-Serret formula, 𝑠𝑠 derivative of the position vector is expressed as

𝒓𝒓′ = 𝒓𝒓0′ + (𝑥𝑥𝒆𝒆𝑥𝑥)′+(𝑦𝑦𝒆𝒆𝑦𝑦)′= 𝑥𝑥′𝒆𝒆𝑥𝑥 + 𝑦𝑦′𝒆𝒆𝑦𝑦 + 1 + 𝜅𝜅𝑥𝑥 𝒆𝒆𝑠𝑠

(15)

Let’s now change our notation to ℎ = 𝜅𝜅 (to follow the literature). Then 
𝑑𝑑𝒓𝒓
𝑑𝑑𝑑𝑑 = 𝒓𝒓′ = 𝒓𝒓0′ + (𝑥𝑥𝒆𝒆𝑥𝑥)′+(𝑦𝑦𝒆𝒆𝑦𝑦)′= 𝑥𝑥′𝒆𝒆𝑥𝑥 + 𝑦𝑦′𝒆𝒆𝑦𝑦 + 1 + ℎ𝑥𝑥 𝒆𝒆𝑠𝑠

ℎ(𝑠𝑠) =
1

𝜌𝜌(𝑠𝑠) : local curvature of the orbit

Note that for planar orbit, the torsion 𝜏𝜏 = 0, and in this case we can easily derive Eq. (14) 
by considering the geometry, without resorting to the Fresnet-Serret formula.
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𝐿𝐿(𝒓𝒓′; 𝑠𝑠) = −𝑚𝑚𝑚𝑚 𝑐𝑐2𝑡𝑡′2 − 𝒓𝒓′2 − 𝑞𝑞 Φ𝑡𝑡𝑡 − 𝒓𝒓𝒓 � 𝑨𝑨

Lagrangian in curved coordinate system with 𝑠𝑠 independent variable
Let’s substitute Eq. (15) into Eq. (13) to express the Lagrangian in terms of components:

= −𝑚𝑚𝑚𝑚 𝑐𝑐2𝑡𝑡′2 − 𝑥𝑥′2 − 𝑦𝑦′2 − 1 + ℎ𝑥𝑥 2 + 𝑞𝑞 −Φ𝑡𝑡′ + 𝑥𝑥′𝐴𝐴𝑥𝑥 + 𝑦𝑦′𝐴𝐴𝑦𝑦 + (1 + ℎ𝑥𝑥)𝐴𝐴𝑠𝑠 (16)

(𝐴𝐴𝑠𝑠= 𝑨𝑨 � 𝒆𝒆𝑠𝑠)

where we used 𝒓𝒓′ � 𝑨𝑨 = 𝑥𝑥′𝐴𝐴𝑥𝑥 + 𝑦𝑦′𝐴𝐴𝑦𝑦 + (1 + ℎ𝑥𝑥)𝐴𝐴𝑠𝑠

𝑆𝑆 = �𝐿𝐿0 𝒓𝒓, 𝒓̇𝒓 𝑑𝑑𝑑𝑑 = � �𝜋𝜋𝑘𝑘𝑞̇𝑞𝑘𝑘 − 𝐻𝐻 𝑑𝑑𝑑𝑑 = � 𝜋𝜋𝑥𝑥𝑥̇𝑥 + 𝜋𝜋𝑦𝑦𝑦̇𝑦 + 𝜋𝜋𝑠𝑠𝑠̇𝑠 − 𝐻𝐻 𝑑𝑑𝑑𝑑

To find the corresponding conjugate variables when the independent variable is 𝑠𝑠, we 
start with the action integral: 

𝛿𝛿�𝐿𝐿0 𝒓𝒓, 𝒓̇𝒓 𝑑𝑑𝑑𝑑 = 𝛿𝛿 � 𝜋𝜋𝑥𝑥𝑥̇𝑥 + 𝜋𝜋𝑦𝑦𝑦̇𝑦 + 𝜋𝜋𝑠𝑠𝑠̇𝑠 − 𝐻𝐻 𝑑𝑑𝑑𝑑 = 0

And the least-action principle is

With 𝑠𝑠 the new independent variable, the least-action principle becomes  

𝛿𝛿�𝐿𝐿0 𝒓𝒓, 𝒓̇𝒓
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑑𝑑𝑠𝑠 = 𝛿𝛿 � 𝜋𝜋𝑥𝑥𝑥𝑥′ + 𝜋𝜋𝑦𝑦𝑦𝑦′ + −𝐻𝐻 𝑡𝑡′ − −𝜋𝜋𝑠𝑠 𝑑𝑑𝑠𝑠 = 0

(17)𝛿𝛿 �𝐿𝐿0 𝒓𝒓, 𝒓̇𝒓
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑑𝑑𝑠𝑠 = 𝛿𝛿 � 𝜋𝜋𝑥𝑥𝑥𝑥′ + 𝜋𝜋𝑦𝑦𝑦𝑦′ + 𝜋𝜋𝑡𝑡𝑡𝑡′ − −𝜋𝜋𝑠𝑠 𝑑𝑑𝑠𝑠 = 0

(𝜋𝜋𝑡𝑡 = −𝐻𝐻)

or
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Note that the longitudinal canonical momentum 𝜋𝜋𝑡𝑡 has the dimension of energy instead of 
momentum. It is because 𝜋𝜋𝑡𝑡 is the conjugate momentum corresponding to the conjugate 
coordinate 𝑡𝑡, as we saw in Eq. (17). 

Canonical momenta in curved coordinates with 𝑠𝑠 independent 
variable

𝜋𝜋𝑥𝑥 =
𝜕𝜕𝐿𝐿
𝜕𝜕𝑥𝑥𝑥

=
𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐2𝑡𝑡′2 − 𝑥𝑥′2 − 𝑦𝑦′2 − 1 + ℎ𝑥𝑥 2
+ 𝑞𝑞𝐴𝐴𝑥𝑥

𝜋𝜋𝑦𝑦 =
𝜕𝜕𝐿𝐿
𝜕𝜕𝑦𝑦𝑦

=
𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐2𝑡𝑡′2 − 𝑥𝑥′2 − 𝑦𝑦′2 − 1 + ℎ𝑥𝑥 2
+ 𝑞𝑞𝐴𝐴𝑦𝑦

𝜋𝜋𝑡𝑡 =
𝜕𝜕𝐿𝐿
𝜕𝜕𝑡𝑡′ =

−𝑚𝑚𝑐𝑐3𝑡𝑡𝑡
𝑐𝑐2𝑡𝑡′2 − 𝑥𝑥′2 − 𝑦𝑦′2 − 1 + ℎ𝑥𝑥 2

− 𝑞𝑞Φ

(18)

13

Equation (17) tells us that with 𝑠𝑠 being the new independent variable, the new 
canonically conjugate variables are 𝑥𝑥,𝜋𝜋𝑥𝑥 , 𝑦𝑦,𝜋𝜋𝑦𝑦 , 𝑡𝑡,𝜋𝜋𝑡𝑡(= −𝐻𝐻) and the corresponding 
new Hamiltonian is −𝜋𝜋𝑠𝑠 .

With the new Lagrangian given in Eq. (16), we can obtain the canonical momenta:
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Hamiltonian with 𝑠𝑠 an independent variable
The Hamiltonian in curved system with 𝑠𝑠 an independent variable is expressed as

𝐻𝐻2 = −𝜋𝜋𝑠𝑠 = 𝑥𝑥′𝜋𝜋𝑥𝑥 + 𝑦𝑦′𝜋𝜋𝑦𝑦 + 𝑡𝑡𝑡𝜋𝜋𝑡𝑡 − 𝐿𝐿

= − 1 + ℎ𝑥𝑥
𝜋𝜋𝑡𝑡 + 𝑞𝑞Φ

𝑐𝑐

2
− 𝜋𝜋𝑥𝑥 − 𝑞𝑞𝐴𝐴𝑥𝑥 2 − 𝜋𝜋𝑦𝑦 − 𝑞𝑞𝐴𝐴𝑦𝑦

2 − 𝑚𝑚2𝑐𝑐2 − 𝑞𝑞 1 + ℎ𝑥𝑥 𝐴𝐴𝑠𝑠 (19)

𝐴𝐴𝑠𝑠 = 𝑨𝑨 � 𝒆𝒆𝑠𝑠

where Eqs. (16) and (18) were subtituted.  Homework 1, prob. 2: Verify Eq. (19). 

Canonical equations of motion are given by

𝑥𝑥′ =
𝜕𝜕𝐻𝐻2

𝜕𝜕𝜋𝜋𝑥𝑥

𝑦𝑦′ =
𝜕𝜕𝐻𝐻2

𝜕𝜕𝜋𝜋𝑦𝑦

𝑡𝑡′ =
𝜕𝜕𝐻𝐻2

𝜕𝜕𝜋𝜋𝑡𝑡

𝜋𝜋𝑥𝑥′ = −
𝜕𝜕𝐻𝐻2

𝜕𝜕𝑥𝑥

𝜋𝜋𝑦𝑦′ = −
𝜕𝜕𝐻𝐻2

𝜕𝜕𝑦𝑦

𝜋𝜋𝑡𝑡′ = −
𝜕𝜕𝐻𝐻2

𝜕𝜕𝑡𝑡
𝜋𝜋𝑡𝑡 is a constant of motion when Hamiltonian does not depend on time 𝑡𝑡 explicitly.

(20)

14
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Canonical momenta vs. kinetic momenta
Recall Eq. (18):

𝜋𝜋𝑥𝑥 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐2𝑡𝑡′2 − 𝑥𝑥′2 − 𝑦𝑦′2 − 1 + ℎ𝑥𝑥 2
+ 𝑞𝑞𝐴𝐴𝑥𝑥

=
𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐2𝑡𝑡′2 − 𝑣𝑣
𝑠̇𝑠

2
+ 𝑞𝑞𝐴𝐴𝑥𝑥 =

𝑚𝑚

1 − 𝑣𝑣
𝑐𝑐

2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑠𝑠
𝑑𝑑𝑡𝑡

+ 𝑞𝑞𝐴𝐴𝑥𝑥 = 𝛾𝛾𝑚𝑚𝑥̇𝑥 + 𝑞𝑞𝐴𝐴𝑥𝑥 = 𝑝𝑝𝑥𝑥 + 𝑞𝑞𝐴𝐴𝑥𝑥

And similarly we get

𝜋𝜋𝑦𝑦 = 𝛾𝛾𝑚𝑚𝑦̇𝑦 + 𝑞𝑞𝐴𝐴𝑦𝑦 = 𝑝𝑝𝑦𝑦 + 𝑞𝑞𝐴𝐴𝑦𝑦

𝜋𝜋𝑡𝑡 = −𝛾𝛾𝑚𝑚𝑐𝑐2 − 𝑞𝑞Φ = −𝐸𝐸

So we see that the canonical momentum 𝜋𝜋𝑡𝑡 is indeed equal to the negative of the total 
energy of a particle, as implied in Eq. (18) (from −𝑞𝑞Φ term).

(21)

where we used Eq. (15), i.e. 

𝑥𝑥′2 + 𝑦𝑦′2+ 1 + ℎ𝑥𝑥 2= 𝑟𝑟′2 =
𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑

2

=
𝑣𝑣
𝑠̇𝑠

2

15
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Use of the canonical momenta is not convenient in practical calculation because they 
are very small quantities. Thus it is more convenient to scale the momenta.
The least action principle expressed by using the new Hamiltonian is

Let’s divide by a constant 𝑝𝑝0 which is usually taken to be the kinetic momentum of the 
reference (or central) particle in the distribution of particles

𝛿𝛿 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝜋𝜋𝑥𝑥 +
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝜋𝜋𝑦𝑦 +
𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑
𝜋𝜋𝑡𝑡 − 𝐻𝐻 𝑑𝑑𝑠𝑠 = 0 (22)

Let’s introduce the scaled canonical momenta and scaled Hamiltonian:

𝛿𝛿 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝜋𝜋𝑥𝑥
𝑝𝑝0

+
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝜋𝜋𝑦𝑦
𝑝𝑝0

+
𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑
𝜋𝜋𝑡𝑡
𝑝𝑝0
−
𝐻𝐻
𝑝𝑝0

𝑑𝑑𝑠𝑠 = 0

𝑃𝑃𝑥𝑥 =
𝜋𝜋𝑥𝑥
𝑝𝑝0

𝑃𝑃𝑦𝑦 =
𝜋𝜋𝑦𝑦
𝑝𝑝0

𝑃𝑃𝑡𝑡 =
𝜋𝜋𝑡𝑡
𝑝𝑝0

𝐻𝐻1 =
𝐻𝐻
𝑝𝑝0

: (scaled) Hamiltonian

(23)

(24)

New scaled Hamiltonian is from Eq. (19) 

𝐻𝐻1 =
𝐻𝐻2

𝑝𝑝0
= − 1 + ℎ𝑥𝑥

𝑃𝑃𝑡𝑡 + 𝑞𝑞Φ
𝑝𝑝0

𝑐𝑐

2

− 𝑃𝑃𝑥𝑥 −
𝑞𝑞𝐴𝐴𝑥𝑥
𝑝𝑝0

2

− 𝑃𝑃𝑦𝑦 −
𝑞𝑞𝐴𝐴𝑦𝑦
𝑝𝑝0

2

−
𝑚𝑚2𝑐𝑐2

𝑝𝑝02
− 1 + ℎ𝑥𝑥

𝑞𝑞𝐴𝐴𝑠𝑠
𝑝𝑝0

(25)
16

where we have changed the notation such that 𝐻𝐻 is now the new Hamiltonian, −𝜋𝜋𝑠𝑠.
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𝐻𝐻1 = − 1 + ℎ𝑥𝑥
𝑃𝑃𝑡𝑡 + 𝑞𝑞Φ

𝑝𝑝0
𝑐𝑐

2

− 𝑃𝑃𝑥𝑥 −
𝑞𝑞𝐴𝐴𝑥𝑥
𝑝𝑝0

2

− 𝑃𝑃𝑦𝑦 −
𝑞𝑞𝐴𝐴𝑦𝑦
𝑝𝑝0

2

−
1

𝛽𝛽02𝛾𝛾02
− 1 + ℎ𝑥𝑥

𝑞𝑞𝐴𝐴𝑠𝑠
𝑝𝑝0

or

(26)

Note that canonical equations of motion do not change if one scales the Hamiltonian and 
canonical momenta by the same factor. Note also that this is not rigorously a canonical 
transformation but just a change of units.

Note also the following with the total energy 𝐸𝐸 = 𝑝𝑝2𝑐𝑐2 + 𝑚𝑚2𝑐𝑐4 + 𝑞𝑞Φ

𝑝𝑝
𝑝𝑝0

=
𝐸𝐸 − 𝑞𝑞Φ 2 − 𝑚𝑚2𝑐𝑐4

𝑝𝑝02𝑐𝑐2
≡ 1 + 𝛿𝛿

where 𝛿𝛿 =
𝑝𝑝 − 𝑝𝑝0
𝑝𝑝0

=
Δ𝑝𝑝
𝑝𝑝0

(27)

is the relative momentum deviation.

Then Eq. (26) can also be written in the following form:

𝐻𝐻1 = − 1 + ℎ𝑥𝑥 1 + 𝛿𝛿 2 − 𝑃𝑃𝑥𝑥 −
𝑞𝑞𝐴𝐴𝑥𝑥
𝑝𝑝0

2

− 𝑃𝑃𝑦𝑦 −
𝑞𝑞𝐴𝐴𝑦𝑦
𝑝𝑝0

2

− 1 + ℎ𝑥𝑥
𝑞𝑞𝐴𝐴𝑠𝑠
𝑝𝑝0

(28)

17
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𝐻𝐻1 = − 1 + ℎ𝑥𝑥 1 + 𝛿𝛿 2 − 𝑞𝑞𝑥𝑥2 − 𝑞𝑞𝑦𝑦2 − 1 + ℎ𝑥𝑥 𝑎𝑎𝑠𝑠

Introducing the scaled kinetic momenta and scaled vector potential as

𝑞𝑞𝑥𝑥 = 𝑃𝑃𝑥𝑥 −
𝑞𝑞𝐴𝐴𝑥𝑥
𝑝𝑝0

=
𝜋𝜋𝑥𝑥 − 𝑞𝑞𝐴𝐴𝑥𝑥

𝑝𝑝0
=
𝑝𝑝𝑥𝑥
𝑝𝑝0

, 𝑞𝑞𝑦𝑦 = 𝑃𝑃𝑦𝑦 −
𝑞𝑞𝐴𝐴𝑦𝑦
𝑝𝑝0

=
𝜋𝜋𝑦𝑦 − 𝑞𝑞𝐴𝐴𝑦𝑦

𝑝𝑝0
=
𝑝𝑝𝑦𝑦
𝑝𝑝0

𝑎𝑎𝑠𝑠 =
𝑞𝑞𝐴𝐴𝑠𝑠
𝑝𝑝0

Then Eq. (28) can be written in more compact form:

(29)

The Hamiltonian 𝐻𝐻1 given in Eq. (29) or Eq. (28) or Eq. (26) is expressed in terms of the 
canonical variables 𝑥𝑥, 𝜋𝜋𝑥𝑥

𝑝𝑝0
, 𝑦𝑦, 𝜋𝜋𝑦𝑦

𝑝𝑝0
and 𝑡𝑡, −𝐸𝐸

𝑝𝑝0
where 𝑡𝑡 is the (ever increasing) time and 𝐸𝐸

is the total energy of the particle.

A more useful set of variables for beam dynamics replaces time and energy with their
increments from the time and energy of the reference particle. And to make the energy a 
positive quantity, we now interchange the signs of the longitudinal variables, i.e. 
−𝑡𝑡, 𝐸𝐸

𝑝𝑝0
. This is allowed because by doing so the Hamilton’s eqs. would not change.

Note: 𝑞𝑞𝑥𝑥 and 𝑞𝑞𝑦𝑦 are not generalized coordinates. 
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So we first transform to the new time coordinate 𝜏𝜏 = −(𝑡𝑡 − 𝑡𝑡0(𝑠𝑠)), where 𝑡𝑡0 𝑠𝑠 is the 
time of the progress of the reference particle along the reference orbit, 𝑡𝑡 is the time at 
which the observed particle passes the position 𝑠𝑠. Obviously the conjugate momentum
(an energy) is 𝑝𝑝𝜏𝜏 = 𝐻𝐻 −𝐻𝐻0

𝑝𝑝0
= 𝐸𝐸 −𝐸𝐸0

𝑝𝑝0
where 𝐸𝐸0 is the energy of the reference particle. Both 

𝑡𝑡0(𝑠𝑠) and 𝐻𝐻0(𝑠𝑠) are given a priori. The time-difference variable measures the lead or lag 
in the arrival at 𝑠𝑠 of the particle in question relative to that of the reference particle. 
To summarize, the old variables (𝑞𝑞, 𝑝𝑝) are (−𝑡𝑡,𝐻𝐻) and the new variables (𝑄𝑄,𝑃𝑃) are 
𝜏𝜏, 𝑝𝑝𝜏𝜏 . To perform the change of variables in a formal way, let’s use a generating function 

of the third type (i. e., function of new coordinates 𝑄𝑄 = 𝜏𝜏 and old momenta 𝐻𝐻). Apart 
from the identity transformation in the transverse plane, we choose

𝐺𝐺3 𝐻𝐻, 𝜏𝜏; 𝑠𝑠 = −
𝐻𝐻 − 𝐻𝐻0 𝑠𝑠

𝑝𝑝0
𝜏𝜏 +

𝐻𝐻
𝑝𝑝0
𝑡𝑡0 𝑠𝑠 (30)

The transformation equations are 

−𝑡𝑡 = −
𝜕𝜕𝐺𝐺3

𝜕𝜕 𝐻𝐻
𝑝𝑝0

= − 𝑡𝑡0 𝑠𝑠 − 𝜏𝜏 , 𝑝𝑝𝜏𝜏 = −
𝜕𝜕𝐺𝐺3
𝜕𝜕𝜕𝜕 =

𝐻𝐻 − 𝐻𝐻0 𝑠𝑠
𝑝𝑝0

=
𝐸𝐸 − 𝐸𝐸0 𝑠𝑠

𝑝𝑝0

𝜕𝜕𝐺𝐺3
𝜕𝜕𝑠𝑠 =

𝐸𝐸 − 𝐸𝐸0 𝑠𝑠
𝑝𝑝0

𝑑𝑑𝑡𝑡0
𝑑𝑑𝑑𝑑 =

𝐸𝐸 − 𝐸𝐸0 𝑠𝑠
𝑝𝑝0𝑣𝑣0

(31)

where we have assumed 𝐸𝐸0 is constant. 
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Then the new Hamiltonian becomes

𝐻𝐻2 = 𝐻𝐻1 +
𝜕𝜕𝐺𝐺3
𝜕𝜕𝑠𝑠

= − 1 + ℎ𝑥𝑥 1 + 𝛿𝛿 2 − 𝑞𝑞𝑥𝑥2 − 𝑞𝑞𝑦𝑦2 − 1 + ℎ𝑥𝑥 𝑎𝑎𝑠𝑠 +
𝐸𝐸 − 𝐸𝐸0
𝑝𝑝0𝑣𝑣0

or equivalently

(32)

𝐻𝐻2 = − 1 + ℎ𝑥𝑥 1 + 𝛿𝛿 2 −
𝜋𝜋𝑥𝑥 − 𝑞𝑞𝐴𝐴𝑥𝑥

𝑝𝑝0

2

−
𝜋𝜋𝑦𝑦 − 𝑞𝑞𝐴𝐴𝑦𝑦

𝑝𝑝0

2

− 1 + ℎ𝑥𝑥
𝑞𝑞𝐴𝐴𝑠𝑠
𝑝𝑝0

+
𝐸𝐸 − 𝐸𝐸0
𝑝𝑝0𝑣𝑣0

(33)

Sometimes it is more convenient to work with the distance instead of time. Computer code 
like MAD-X uses (−𝑐𝑐∆𝑡𝑡, 𝑝𝑝𝑡𝑡) where

This is just identical to 𝜏𝜏, 𝑝𝑝𝜏𝜏 except that the longitudinal coordinate is the distance instead 
of time. Then the Hamiltonian remains the same as Eq. (33). 

−𝑐𝑐∆𝑡𝑡 = −𝑐𝑐 𝑡𝑡 − 𝑡𝑡0 𝑠𝑠 =
𝑠𝑠
𝛽𝛽0
− 𝑐𝑐𝑐𝑐,

𝑝𝑝𝑡𝑡 =
𝐸𝐸 − 𝐸𝐸0
𝑝𝑝0𝑐𝑐

=
𝑝𝑝𝜏𝜏
𝑐𝑐 =

𝐸𝐸 𝑠𝑠
𝑝𝑝0𝑐𝑐

−
1
𝛽𝛽0

=
1
𝛽𝛽0
𝐸𝐸 − 𝐸𝐸0
𝐸𝐸0

=
1
𝛽𝛽0

𝛾𝛾
𝛾𝛾0
− 1

(34)

The Hamiltonian given in Eq. (33) can be expressed in different form: 

𝐻𝐻2 =
𝑝𝑝𝑡𝑡
𝛽𝛽0
− 1 + ℎ𝑥𝑥 𝑝𝑝𝑡𝑡 +

1
𝛽𝛽0

2

−
𝜋𝜋𝑥𝑥 − 𝑞𝑞𝐴𝐴𝑥𝑥

𝑝𝑝0

2

−
𝜋𝜋𝑦𝑦 − 𝑞𝑞𝐴𝐴𝑦𝑦

𝑝𝑝0

2

−
1

𝛽𝛽02𝛾𝛾02
− 1 + ℎ𝑥𝑥

𝑞𝑞𝐴𝐴𝑠𝑠
𝑝𝑝0

20
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Eq. (35) is our final Hamiltonian. This is identical with the Hamiltonian derived in Wolski’s 
book, except the notation for energy deviation. Note that the origin of this Hamiltonian is 
MAD code (although not exactly the same) and we are following the MAD notation for 
energy deviation, i.e.  𝑝𝑝𝑡𝑡. Our Hamiltonian is an exact Hamiltonian derived in planar 
curvilinear coordinate system.  Similar but different longitudinal canonical variables are 
used in BMAD, SAD, SixTrack, AT and Elegant codes as listed in the below. But they all 
become identical for ultra-relativistic particle, as in electron storage rings. 

∆𝑠𝑠 = 𝑠𝑠 − 𝛽𝛽𝑐𝑐𝑐𝑐

𝛿𝛿 =
𝑝𝑝 − 𝑝𝑝0
𝑝𝑝0

𝜎𝜎 = 𝑠𝑠 − 𝛽𝛽0𝑐𝑐𝑐𝑐

𝑝𝑝𝜎𝜎 =
𝐸𝐸 − 𝐸𝐸0
𝑐𝑐𝛽𝛽0𝑝𝑝0

𝐻𝐻 𝑥𝑥,𝑃𝑃𝑥𝑥,𝑦𝑦,𝑃𝑃𝑦𝑦 ,∆𝑠𝑠, 𝛿𝛿; 𝑠𝑠 = 𝛿𝛿 − 𝑃𝑃𝑠𝑠

𝑃𝑃𝑥𝑥 =
𝜋𝜋𝑥𝑥
𝑝𝑝0

𝑃𝑃𝑦𝑦 =
𝜋𝜋𝑦𝑦
𝑝𝑝0

𝑃𝑃𝑠𝑠 =
𝜋𝜋𝑠𝑠
𝑝𝑝0

𝜋𝜋𝑥𝑥 = 𝛾𝛾𝑚𝑚𝑥̇𝑥 + 𝑞𝑞𝐴𝐴𝑥𝑥, 𝜋𝜋𝑦𝑦 = 𝛾𝛾𝑚𝑚𝑦̇𝑦 + 𝑞𝑞𝐴𝐴𝑦𝑦 , 𝜋𝜋𝑠𝑠 = (1 + ℎ𝑥𝑥)𝛾𝛾𝑚𝑚𝑠̇𝑠 + 𝑞𝑞(1 + ℎ𝑥𝑥)𝐴𝐴𝑠𝑠,

𝐻𝐻 𝑥𝑥,𝑃𝑃𝑥𝑥,𝑦𝑦,𝑃𝑃𝑦𝑦 ,𝜎𝜎, 𝑝𝑝𝜎𝜎; 𝑠𝑠 = 𝑝𝑝𝜎𝜎 − 𝑃𝑃𝑠𝑠
𝐻𝐻 𝑥𝑥,𝑃𝑃𝑥𝑥,𝑦𝑦,𝑃𝑃𝑦𝑦,−𝑐𝑐∆𝑡𝑡, 𝑝𝑝𝑡𝑡; 𝑠𝑠 =

𝑝𝑝𝑡𝑡
𝛽𝛽0
− 𝑃𝑃𝑠𝑠

−𝑐𝑐∆𝑡𝑡 = −𝑐𝑐 𝑡𝑡 − 𝑡𝑡0 =
𝑠𝑠
𝛽𝛽0
− 𝑐𝑐𝑐𝑐

𝑝𝑝𝑡𝑡 =
𝐸𝐸 − 𝐸𝐸0
𝑐𝑐𝛽𝛽0𝑝𝑝0
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