PLS-II 빔라인 소개 및 X-선 광학계 기초

미래기반 가속기 전문인력양성 사업단

Contents

http://pal.postech.ac.kr

Beamline and Experiments

2025-05-02

Major Parameter of PLS-II

		Storage Ring	Reamline &
Parameter	Value		Experimental System
Beam energy	3 GeV		
Beam current	360 mA(Max. 400 mA), Top-up mode		
Lattice structure	Double-Bend		¥
Super-period	12		Tr /
Emittance	5.8 nmrad	ectron Gun	
Tune(H/V)	(15.375/9.145)	Kystron & Modulator Gallery	-
RF frequency	499.96 MHz		
Energy spread	0.1%	Line	Electron Beam
		Electron Beam Transfer Line	
		Superconducting RI	⁼ System

Three Forms of Synchrotron Radiation

KWang5J@Kim, AIP Conference Proceedings 184,565(1989) 가속기 실험실습

Synchrotron Light Source.)

Characteristics of Synchrotron Radiation

- Very high brightness(high spatial resolution, high spectral resolution)
- Tunability
- High degree of coherence
- A pulsed nature
- Linear circular polarization
- High flux

가속기 실험실습

POSTECH

미래기반 가속기 전문인력양성 사업단

7

Beamlines

2025-05-02

미래기반 가속기 전문인력양성 사업단

미래기반 가속기 전문인력양성 사업단

PLS-II Beamline Map

Researchers using Synchrotron Radiation

미래기반 가속기 전문인력양성 사업단

- ✓ VUV/Soft X-ray
- ✓ Hard X-ray

Photon energy

VUV/Soft X-ray	Hard X-ray
What are the electrons doing as they migrate between the atoms?	Where are the atoms?
Chemical bonding Valence band structure	Determination crystal structure and molecular structure
Photoelectron $\lambda_{el} = 1 \text{ Å}$	Photon $\lambda_{ph} = 1 \text{ Å}$
E (electron) = $p^2/(2m)$ = $h^2/(2m\lambda_{el}^2)$	E (photon) = hc/λ_{ph} $\sim 12.4 \text{ keV}.$
∽ 150 eV. * De Brogile wavelength λ=h/p	

1 H Huydrogen 1.008	,			Ρ	ERIC	DIC	TAE	BLE C	OF T	HE E	LEN	IEN	rs				10 2 He Hafiam 4.003
J Li Lithium 6.941	4 Be Berylium 9.012											5 B 80100 10.811	С Сатбол 12.011	7 N Nitrogen 14.007	B O Dogen 15.999	9 F Flaarice 18.998	10 Ne Necn 20.180
11 Na 50dium 22.990	Magnessum 24.305	Ξ,										13 Al Auminum 26.982	5000 28.086	Phasphorus 30.974	16 S Sulfur 32.066	Charine 35,453	18 Ar Argan 39.948
19 K 91ausium 39.098	20 Ca Catclam 40.078	21 SC 5candum 44.956	22 Ti TRanium 47.88	23 V Vanadiam 50.942	Chrumiam 51.996	25 Mn Manganese 54.938	26 Fe iton 55.845	27 Co Cobut 58.933	28 Ni Nickel 58.693	29 Cu 63.546	30 Zn Zinc 65.38	31 Ga Gallian 69,723	Germanian 72.631	33 As Arsenic 74.922	34 Se Selanium 78.971	35 Br Bramine 79.904	36 Kr Krypton 83.798
37 Rb Iubidium 85.468	38 Sr Stroetliam 87.62	39 Y Yttrium 88.906	Zr Dirconium 91.224	AI Nb Niobium 92,906	42 Mo Mulybdetum 95.95	43 TC Technetium 98.907	Ruthenium 101.07	45 Rh Rhadiam 102.906	Palledium 105.42	47 Ag 5/her 107.868	48 Cd 112.414	49 In Indiam 114.818	50 Sn 118.711	Sb Antimeny 121.760	Te Te Telurium 127.6	53 ledine 126.904	54 Xe Xenon 131.294
55 CS Cesium 132.905	56 Ba Bailum 137,328	\$7-71	Hf Hf Hatnium 178.49	Tantalum 180.948	74 W Tungsten 183.85	75 Re Rhenium 186.207	76 OS Osmium 190.23	77 I Iridium 192.22	Platinum 195.08	79 Au 6016 196.967	B0 Hg Mercary 200.59	Thallium 204,383	82 Pb Lead 207.2	83 Bi Bismuth 208.980	84 P0 Polonium [208.982]	Astatine 209.987	86 Rn 8800 222.018
87 Fr Tancium 123.020	88 Ra Radum 226.025	89-103	104 Rf Rutherfordium [261]	105 Db Dabrium [262]	106 Sg Seaborgium [266]	107 Bh Bahrium [264]	108 HS Hasslam [269]	109 Mt Meltnerium [278]	110 DS Darmstadfium [281]	Rountgenfum [290]	Coperniciam [285]	113 Nh Nihonium [286]	Fl Fl [289]	115 Mc Mascovium [289]	LIV LV Livermoriam [293]	117 TS Tennessine [294]	118 Og Oganession [294]
		Long	17 a 1905 Ce 140	58 Ce Paser 5116 24	59 Pr Maymium 0.908	0 d mium 243	il mS milum 913	62 m 10.36 Euro 151	33 U 2964 25	64 Gd olinium 57.25	35 b bium 16	66 Dy 1101 2,500	17 6 10 E 1930 16	8 r 1000 1259 168	9 m 1000 934 Y 173	70 7 'b L 1055 274	1 U 1967
		Acti 227	19 C 10 10 10 10 10 10 10 10 10 10	90 h F 210m 2.038 Prota 2.31	91 9 Pa U ctinium Una 1.036 238	2 J Num 029 237	13 Ip unium 048	94 Pu A arium 4.064 243	95 m 11clum 1.061	96 m elum 7.070	alium 2070 25	96 Cf brotum 1.080	19 1 S F 54] 557	nium 100 110 100 100 100 100 100 100 100 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	02 11 10 Laws 101 [20	03 . ľ scium 52]

Absorption-edge energies of the elements

Figure 7.28 Absorption-edge energies of the elements between hydrogen and uranium. Soft x-ray RIXS machines cover approximately the energy regime highlighted in yellow, hard x-ray RIXS equipment the range in blue.

Figure 7.9 The universal curve. Plot of the inelastic mean free path (IMFP) of electrons emerging from the surface of condensed matter, as a function of electron kinetic energy \mathscr{C}_{e} . The solid blue line describes the general expression $\Lambda_e = A/\mathscr{C}_e^2 + B\sqrt{\mathscr{C}_e}$, encapsulating both the low-energy (below 15 eV) and high-energy (above 150 eV) limiting physical cases. The best least-squares fit results in A = 1430 and B = 0.54 if \mathcal{E}_{a} is expressed in eV. The vellow points are experimentally determined values, mainly from elemental samples. The red points are for water, important data for solid-liquid-interface data in high-pressure XPS experiments. Adapted from [3] with permission from John Wiley.

An Introduction to Synchrotron Radiation: Techniques and Applications, Second Edition. Philip Willmott. © 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

An Introduction to Synchrotron Radiation: Techniques and Applications, Second Edition. Philip Willmott. © 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

WILEY

POSTECH

가속기 실험실습

Layout of Beamlines(8A)

미래기반 가속기 전문인력양성 사업단

2025-05-02

POSTECH

▶ 가속기 실험실습

Courtesy of YDYoun

Representative Beamline Experiments

미래기반 가속기 전문인력양성 사업단

https://www.researchgate.net/publication/344196119_Physical_M ethods_for_LiNa_Ion_Battery_Characterization

2025-05-02

A Typical X-ray Beamline

An Introduction to Synchrotron Radiation: Techniques and Applications, Second Edition. Philip Willmott. © 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

- ✓ Making the emitted photon suitable for practical experiments : Optical devices
- ✓ Deliver meaningful photon flux to Exp. Station : Vacuum system
 - * Absorption lengths for X-rays in gases

 Transmission optics for synchrotron radiation is difficult(or impossible).

미래기반 가속기 전문인력양성 사업단

Beam-position monitor(BPM)

Figure 5.2 Different designs for beam-position monitors: (a) a simple 1D wire monitor, (b) a 2D blade monitor, and (c) a diamond CVD profile monitor.

An Introduction to Synchrotron Radiation: Techniques and Applications, Second Edition. Philip Willmott. © 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

Beam-position monitor(BPM)

미래기반 가속기 전문인력양성 사업단

Figure 5.3 Beam-defining primary apertures. Normally the first component downstream of the source, these watercooled apertures define the angular range to the beamline and often have a rectangular cone shape, in order to distribute the thermal load over a larger area. Because the outer parts of the synchrotron radiation contains lower-energy photons than the central cone, these apertures also act as high-pass filters.

An Introduction to Synchrotron Radiation: Techniques and Applications, Second Edition. Philip Willmott. © 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

High-pass filter

미래기반 가속기 전문인력양성 사업단

Figure 5.4 High-pass diamond front-end filters used to remove the low-energy component of the x-ray spectrum. (a) The transmission curves for various thicknesses of diamond filters, assuming a density of 3.5 g cm^{-3} . (b) A 100 µm-thick, ultra-high-vacuum-compatible, water-cooled diamond window, used to remove soft x-rays and provide isolation between the storage-ring vacuum and the beamline vacuum. Courtesy of Max Kleeb, Paul Scherrer Institute.

An Introduction to Synchrotron Radiation: Techniques and Applications, Second Edition. Philip Willmott. © 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

Available x-ray optical techniques

미래기반 가속기 전문인력양성 사업단

Full-field TXM

A Fresnel zone plate lens

multilayer-coated two-bounce Schwarzschild

Mirrors for Synchrotron Beamlines

미래기반 가속기 전문인력양성 사업단

X-ray Mirrors for Synchrotron Beamlines

미래기반 가속기 전문인력양성 사업단

Figure 5.17 X-ray mirrors. (a) A reflecting flat x-ray mirror has a residual mesoscopic/macroscopic 'wobbliness' to it, referred to as the slope error, which causes the beam profile to become more irregular. In addition, the roughness on an atomic scale must not exceed a few angstroms. (b) A bendable silicon mirror at the Materials Science beamline. The usable length is 400 mm. The footprint of the grazing-incidence beam is shown as the narrow yellow ellipse. Courtesy Dominik Meister, Raul Scherrer Institute.

An Introduction to Synchrotron Radiation: Techniques and Applications, Second Edition. Philip Willmott. © 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

WILEY

2025-05-02

Different Monochromator Type

미래기반 가속기 전문인력양성 사업단

Figure 5.20 Different monochromator types. A selection of grating (red), multilayer (yellow), and crystal (blue) monochromator element periodic spacings d and the typical energy range that they serve.

An Introduction to Synchrotron Radiation: Techniques and Applications, Second Edition. Philip Willmott. © 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

Monochromators: Crystals and Gratings

- ✓ Diffraction from periodic structures is used to select the desired energy from the "white" synchrotron radiation.
- ✓ Crystals used at hard X-ray energies Bragg's law:

 $2d\sin\theta = m\lambda$

2d	Energy Range
1.624	8.0 – 88 <u>keV</u>
3.274	4.0 – 44 <u>keV</u>
3.84	3.4 – 37 <u>keV</u>
4.118	3.2 – 35 keV
6.2712	2.1 – 23 keV
7.4806	1.7 – 19 <mark>keV</mark>
15.954	0.82 – 9 <u>keV</u>
	2d 1.624 3.274 3.84 4.118 6.2712 7.4806 15.954

Source: ALS/CXRO X-ray Data Booklet & XOP

Double Crystal Monochromator

성 사업다

Double Crystal Monochromator

미래기반 가속기 전문인력양성 사업단

Figure 5.27 Double-crystal monochromators. (a) The geometry of a DCM. The first crystal monochromatizes the incoming polychromatic light, while the second crystal redirects the monochromatized beam parallel to the incoming and beam. In order to keep the offset between the incoming and exit beam height constant for all photon energies (and monochromator crystal angles), the horizontal separation between the two crystals must be variable. (b) The second crystal can be dynamically flexed to 'sagittally' focus the beam in the horizontal plane. The bending radius of the crystal depends on the angle of incidence (in other words, the Bragg angle 0) and the desired focal position, and can be calculated using Equation (5.11). (c) A technical rendition of the DCM at the Materials Science beamline, Swiss Light Source. The path is shown of the incident polychromatic beam (shown in ed) on the first crystal (X1) and the monochromated beam (in yellow) incident and diffracted off the second crystal (X2).

An Introduction to Synchrotron Radiation: Techniques and Applications, Second Edition. Philip Willmott. © 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

WILEY

2025-05-02

Effect of Heat Load on Monochromator First Crystal

미래기반 가속기 전문인력양성 사업단

Double Crystal Monochromator (DCM): Energy selection(10C XAFS BL,PLS-II)

미래기반 가속기 전문인력양성 사업단

2025-05-02

POSTECH

/ 가속기 실험실습

27

Multilayer

Figure 5.31 Multilayers used in monochromators. (a) The simulated reflectivity curve at an incident angle of 1.15° as a function of photon energy for the Ru/B₄C multilayer fabricated for the BM5 beamline at the ESRF. (b) A schematic of the structure [12].

An Introduction to Synchrotron Radiation: Techniques and Applications, Second Edition. Philip Willmott. © 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

Three Common Grating

Figure 5.21 Three common grating profiles used to disperse ultraviolet light and soft x-rays.

An Introduction to Synchrotron Radiation: Techniques and Applications, Second Edition. Philip Willmott. © 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

Diffraction Gratings

미래기반 가속기 전문인력양성 사업단

 $\checkmark\,$ The grating equation.

$$d(\sin\beta - \sin\alpha) = m\lambda$$

d = grating line spacing

Groove depth : *h* Duty ratio : *a/d*

- Diffraction gratings are used from visible (and beyond) to soft X-ray energies. Gratings can function up to and above 2 keV, with decreasing efficiency
 Practical limit on line spacing is about 2000 lines/mm
- •Most monochromators use first order diffraction
- •Most gratings are "blazed", ie the groove profile is figured to optimize for certain angle/wavelength ranges.
- Unlike crystal diffraction, all energies are diffracted all the time. An exit slit is needed to select a monochromatic beam.
- Zero order is not dispersed (grating acts like a mirror, ie $\alpha = \beta$).

Grating's groove depth, width and photon energy

미래기반 가속기 전문인력양성 사업단

- Deliver the required X-ray beam to the experiment:
 - ✓ Energy and bandwidth
 - ✓ Spot size
 - ✓ Divergence/convergence
- Preserve source characteristics eg intensity, brightness, coherence
- Handle the heat load of the beam
- Optimize signal / background
- Be very stable and reproducible, in position, intensity and energy
- Be safe to operate
- Be user friendly to operate
- Achieve all the above within a reasonable budget !

Layout of Soft X-ray Beamlines(8A)

- Photon Source : Undulator (Out vacuum undulator)
- Vacuum system
- Optical system : Mirror, Plane Grating Monochromator,
- Beam diagnostic system
- Slit
- Experimental system
- Utilities
- DAQ,
- Electrical system
- Interlock system
- Safety : Radiation Safety, Gas safety, Laser safety
-

Layout of hard X-ray Beamlines(3C)

미래기반 가속기 전문인력양성 사업단

- Photon Source : Undulator (in-vacuum)
- Vacuum system
- Optical system : Mirror, Double Crystal Monochromator,
- Beam diagnostic system
- Slit
- Experimental system(inside Hutch)
- Utilities
- DAQ,
- Electrical system
- Interlock system
- Safety : Radiation Safety, Gas safety, Laser safety
-

Example) What we did to constant of 8A Beamline

8A1 SPEM

Catio

Advanced Materials (2017)

미래기반 가속기 전문인력양성 사업단

10A1 STXM

Keyword for Required Beamline

- : High Photon Flux
- : Cover Wide range of photo

> 10A beamline branching

Keep 10A1 STXM as it is.

Accept 8A2 HR-PES II user.

→ 10A1 STXM/10A2 HR-PES II

> 8A beamline reconstruction

Photon energy : 200 ~ 2000eV(Practical)

(100 eV ~ 3000eV, available)

Photon Flux : $\sim > 10^{13}$

Beam size : < 50µm

Resolving power : > 4000 ~ 10000

→ 8A1 SPEM/8A2 KBSI – PAL APXPS

395

390

405 400

Binding Energy(eV)

410

Resources for 8A Beamline

미래기반 가속기 전문인력양성 사업단

Electron Beam

Parameter	Value
Beam energy	3 GeV
Beam current	200~400mA (Max. 400 mA)
Lattice structure	Double-Bend
Super-period	12
Emittance	5.8 nmrad
Tune (H/V)	15.375/9.145
RF frequency	499.96 MHz
Energy spread	0.1%

Major Parameter for PLS II

2025-05-02

/r속기 실험실습

Photon Source

:Undulator

Beam size at Mirrors

미래기반 가속기 전문인력양성 사업단

Mirrors spec.

Shadow		M1	pre-	Grating	M3(8A2)	M3'(8A1)	НКВ	VKB
830eV, FWHM M1 (1.2°) M2 Grating M3 (1.5°)	Max. size@mirror(f	79.1	24.7	46.7	76.3	76.3	33.6	116.9
Source	Incident Angle	88.8	86~88.6	86.45~89.09	88.5	88	88.5	88
903 um x 52 um 🔶 1236 um x 606 um 🔶 1331 um x 606 um 📦 1342 um x 606 um 🔶 1351 um x	Max. Beam size(H)	1.67	1.87	1.91	1.65		0.91	0.67
M1 footprint M2 footprint Grating footprint M3 footpr	Max. beam size(V)	1.53	1.42	1.42	6.34		3.5	3.96
58.4 mm x 606 um 11.6 um x 606 um 68.6 um x 606 um 52.3 mm x 52.3 mm x	Clear Aperture	140	110		112		66	196
VKB (2.0°) HKB (1.5°) Sample position	Mirror Size(L x W)	200 x 40 x 50	380 x 80 x 5 0	(80x10) x 4 x 20	160 x 50 x 5 0		120 x 50 x 5 0	240 x 50 x 5 0
651 um x 1812 um VKB footprint	Cooling	Internal	Internal	In-Ga				
78.3 um x 41.3 um 47.1 mm x 759 um 33.1 mm x 1555 um	Function	Cylindrical V-collim.	plane	plane	Toroidal	Toroidal	Cylindrical H-focus.	Cylindrical V-focus.
	Tangential®	infinite	infinite	infinite	400000	320000	108800	75500
	sagittal®	8012.3	infinite	infinite	3138	4400		

Monochromator(VIA-PGM)

미래기반 가속기 전문인력양성 사업단

Needed photon specs. (cover 200~2,700 eV, >~1012 photons/sec)

Variable inclusive angle for covering wide photon-energy range.

Monochromator, Resolving powers (ray-tracing)

미래기반 가속기 전문인력양성 사업단

Total resolving power: main: 5,000~18,000, aux: 3,000~25,000

 $c = \cos\beta/\cos\alpha$: focus constant

ΔE 1: entrance spread, ΔE 2: Exit width spread., ΔE 3: G slope Err. ΔE Tot: S.R. sum
 Source width: 51.5 um, Exit slit: 20 um, Slop error: 0.1" (0.485 urad), D(StoSlit)=19, D(GtoExS)=7.5

Exp. Floor View

POSTECH 가속:

₩ 가속기 실험실습

Research Opportunities using Synchrotron Radiation

미래기반 가속기 전문인력양성 사업단

PLS-II Beamline Map

Versatile Sample Systems

미래기반 가속기 전문인력양성 사업단

https://en.wikipedia.org/wiki/ Terrace_ledge_kink_model#/media/File:Crystal_surface.jpg

Adv. Mater. 2020, 32, 2002435

Nature Methods 18, 431(2021)

Chem. Rev. 117, 13123-13186(2017)

Phil. Trans. R. Soc. A 377: 20180240.

2025-05-02

가속기 실험실습

Detectors

Figure 7.3 X-ray absorption and x-ray fluorescence experiments. Monochromatic synchrotron radiation (SR) is allowed to impinge on a sample. X-ray absorption spectra can be recorded by measuring the amount of light that passes through a thin sample. The x-ray intensities before entering the sample (J₀) and ther (J) are measuring the amount of light that passes through a thin sample. The x-ray intensities before entering the sample (J₀) and ther (J) are measured using in vacuum, x-uch as in biological or catalytic experiments. The total electrino current (J) can also be used to indirectly determine the absorption spectrum. In this case, the sample and detectors must be in vacuum, x-ray fluorescence spectra can be recorded, either using a crystal monochromator (XM) in wavelength-dispersive spectra (WDX), or by using a dispersive solid-state semiconductor device (EDX). The integrated fluorescence yield can also be used as a measure of absorption strength. Unwanted detection or detaixelly scattered x-rays is best achieved by placing the detector on the polarization asks of the synchrotron radiation (see also Figure 2.8).

An Introduction to Synchrotron Radiation: Techniques and Applications, Second Edition. Philip Willmott. © 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

How to prepare a sample surface?

미래기반 가속기 전문인력양성 사업단

47

Surface Study

✤ Electron Escape Depth

Ring-Opening Reaction of Tetrahydrofuran on the Co(100) Surface

Exp. Beamline : 10A2

Surface Study

- > Nature of the surface space charge layer on undoped SrTiO₃(001)
 - ABO₃-type perovskite structure Colossal magnetoresistance (CMR), Metal-insulator transition (MIT), High Tc superconductivity, Two- dimensional electron gas (2DEG)
 - interfacial layers where different complex oxides form are mainly responsible for these exotic features

 SrO_{1+x} surface oxide (orange) ** * SrTiO₃ lattice oxide (cyan)

Comparison of Sr 3d spectra * at different probing depths

132

Characteristic binding energy * positions of the SrTiO₃ lattice component as a function of annealing temperature

H. Lim et al, J. Mater. Chem. 49 $C DOI \cdot 101039/d1tc03436a(2021)$

(c)

Lattice structure of SrTiO₃

Reconstructed lattice structur Linit cel

Semiconductor Industry

Nano-Scale Analysis Using Synchrotron-Radiation

-528

Intensity [Normalised to I₀] untreated He-plasma -plasn treatment 295 300 100 105 110 115 Photon Energy [eV] 280 285 290

C-K edge

Si-L edge

✤ EUV patterning

SYNCHROTRON RADIATION NEWS, 32,22(2019)

미래기반 가속기

전문인력양성 사업단

EUV ring at PAL(under construction)

Cultural Heritage

Determination of Arsenic Poisoning and Metabolism in

Elemental maps, obtained on Vincent van Gogh's "Patch of Grass", showing the hidden portrait of a woman.

FIG. 8. Elemental maps, obtained on Vincent van Gogh's "Patch of Grass", showing the hidden portrait of a woman. (a) and (b) show the Sb distribution, while (c) and (d) show the Hg distribution. (a) and (c) were acquired with MA-XRF at a synchrotron source, while (b) and (d) are results of in situ measurements by means of the mobile scanner. (a) and (c) were acquired with a step size of 0.5 mm and 2 s dwell time in two days, while (b) and (d) were acquired with a step size of 1 mm and a dwell time of 5.1 s in six days.

J. Anal. At. Spectrom., 2011, 26, 899

Phar Lap's preserved hide, which is on display at Museum Victoria, Melbourne, Australia.

Figure 2. Analysis of Phar Lap's hair. An optical image shows the root end of one hair with the root sheath intact (a). The hair was analyzed with an X-ray microprobe that imaged the internal arsenic distribution (b). The longitudinal profile reflects the hair growing outwards as the arsenic is metabolized (c), while 2D XANES mapping reveals the variation in arsenic speciation ratios (d).

Figure 4. Micro X-ray fluorescence maps of sulfur and arsenic. Arsenic has a strong affinity for the sulfur-rich cuticle layer as well as within the cortex, and to a lesser extent the root sheath.

Angew. Chem. Int. Ed. 2010, 49, 4237

가속기 850 11.855 11.860 11.865 11.870 11.875 11.880 11.885 11.880 11.885 11.890 11.895 11.900 Energy/eV

Subcutaneous Arsenic-Rich Region

1902 Horse Specimen

Distal Hair

Batteries

- ✓ In situ/operando synchrotronbased X-ray techniques for lithium-ion battery research
 - Lithium-ion battery (LIB) technology
 - Challenges such as energy density, cycle life, and safety
 - Fundamental understanding of the reaction mechanisms in various physical/chemical processes during LIB operation
 - synchrotron-based X-ray characterization techniques are powerful tools for providing valuable information about the complicated reaction mechanisms

Synchrotron based X-ray techniques

미래기반 가속기

전문인력양성 사업단

CO Oxidation

b

а

d

Pt (111)

Anatase (101

C

Influence of lattice oxygen on the catalytic activity of blue titania supported Pt catalyst for CO oxidation

Characteristics of the active oxygen species of blue TiO₂ with a higher concentration of oxygen vacancies as a model catalyst with deposited nano-sized Pt toward CO oxidation are unraveled
 Surface lattice oxygen of blue TiO2 leads to the high activity of CO oxidation

Catalysis Science & Technology

ROYAL SOCIETY

V

CO₂ intensity (10⁻⁹

torr)

.0

3000

H. Choi, et al., Catal. Sci. Technol., 11, 1698(202\$)

Batteries

- ◆ In situ XAS to investigate the different contributions of three™ 전문인력양성 사업단 transition metals to the electrochemical charge/discharge reactions in Li1.2Ni0.15Co0.1Mn0.55O2
- In situ XRD of Li2MoO3 and TR-XRD of LiNi1/3Co1/3Mn1/3O2

Fig. 6 in situ XAS to investigate the different contributions of three transition metals to the electrochemical charge/discharge reactions in $L_{1,2}M_{0,35}G_{0,4}M_{0,4}G_{0,5}G_{0,4}M_{0,4}G_{0,5}G_{0,4}M_{0,4}G_{0,5}G_{0,4}M_{0,4}G_{0,5}G_{0,4}M_{0,4}G_{0,5}G_{0,4}M_{0,4}G_{0,5}G_{0,4}M_{0,4}G_{0,5}G_{0,4}M_{0,4}G_{0,5}G_{0,4}M_{0,4}G_{0,5}G_{0,4}M_{0,4}G_{0,5}G_{0,4}M_{0,4}G_{0,5}G_{0,4}G_{0,4}G_{0,5}G_{0,4}G_{0,4}G_{0,5}G_{0,4}G_{0,4}G_{0,5}G_{0,4}G_{0,$

 Operando sXAS results collected by using a LiNi1/3Mn1/3Co1/3O2 /PEO-LiTFSI/Li battery cell

Fig. 7: Instu TRXAS of LIM₁₂, Mn₁₂, Go₁₂O₂, and U₁₂Ni₁₂, Go₂₂, Mo₂₂O₂, during constant current charging and constant voltage charging. Normalized XMRS spectra of NAC at the N b C G and C of Mn Redges charging DC charging D The Nedge energy with as a function of normalian linhum content x in U₁₁, Ni₁₂, Mn₁₂, Go₂₂O, during the initial charge process at the current rates of 1, 10, and 30C. Reproduced with premission¹³. Corpurplit 23D, WileVi-Viet, A legalitation of the initial charge process at the current rates of 1, 10, and 30C. Reproduced with premission¹³. S V constant voltage. The projection view of the corresponding Ni–O, Co-Q, and Mn–O peak magnitudes of the Fourier transformed K-edge spectra as function of the charging time. Reproduced with premission¹³. Co-Qright 23J, WIEFX/eT.

Fig. 8 Operando sXAS results collected by using a LiNi_{1/3}Mn_{1/3}Co_{1/2}O₂ /PEO-LiTFSI/Li battery cell. a Ni L-edge sXAS TFY spectra of an NMC cathode. Data collected simultaneously with electrochemical cycling at a C/5 rate. **b** Fe L-edge sXAS TEY spectra of the LiFePO₄ cathode in Cell 3 at different electrochemical cycling stages labeled A–D in the initial charge cycle and after 14 and 40 h of relaxation. The line shape at L₃ at approximately 706 eV and L₂ at approximately 706 eV and L₂ at approximately 706 eV and L₂ at approximately 719 eV fingerprints the oxidation state of Fe in LiFePO₄, which does not show any change without long relaxation. Reproduced with permission¹³. Copyright 2013, Nature Publishing Group

2025-05-02

POSTEEH

가속기 실험실습

NPG Asia Materials (2018) 10: 563-556

Pattoriac		hnique		Capability	Limitation	References 속기
Datteries	X-ray	y Diffraction ()	XRD)	- Average structure information	Difficult to obtain information for	11-12,15- 성 사업단
				: degree of crystallinity, phase purity, phase identification, atomic position, lattice parameter	amorphous materials.	16,18,19, 29
In situ synchrotron	-based X-ray	/		- Relatively easy to design experiments and in situ cells.		
techniques and the	eir X-ray (XPE	X-ray Pair Distribution Function Analysis (XPDF)		- Both short-range and long-range structural information	- Limited resources (few number of capable beamlines)	30-32
Capabilities/IIIIIta	UIIS			: Atomic pair distance, local ordering/disordering.	- Require careful in-situ cell design	
				- Useful to solve structure of amorphous, disordered materials		
	X-ray	y Absorption	on Hard X-ray absorption spectroscopy (hXAS)	XANES	- Not capable to study low atomic	15, 32-39
 Various in situ/operando electrochem cell designs for synchrotron-based X- 	ical spec ray	ctroscopy		: valence state changes, covalency, and local coordination environment in elemental specific way	number elements	
characterization	-)			EXAFS		
Cell casing with Kapton window	_			: local structural changes of bond length, coordination number, degree of disordering		
Wave spring Spacer with hole			Soft X-ray absorption spectroscopy (sXAS)	- Surface sensitive technique to probe electrode materials	- Requires ultra-high vacuum (UHV) condition for measurement	13,57
Anode Gestet Capperent Unand Presentin				- Different modes with different probing depth	: Difficult to construct in situ cells using liquid electrolyte	
Cathode Critering the				Auger electron yield (AEY): ~ 1 nm		
Cell casing with Kapton window Pouch cell				Total electron yield (TEY): ~10 nm		
top electronic outsid d de de				Partial electron yield (PEY): ~5 nm		
widow Control				Total fluorescence yield (TFY); ~ 500 nm		
bitton electron	Scan (STX	nning/Transmis (M/TXM)	ssion X-ray microscopy	- Morphology and structure evaluation in micro/macro scale	- Relatively complicated in situ cell design	14, 17, 20, 40-60
plantic body Gour				: Capable to observe micro-crack, particle fracture,		
f Objective CCD				- Can obtain chemical information (elemental/chemical		
Synchrotron Condenser Pin hole				mapping)		
X-ray beam Gapillary Cabillary Cabillary				: concentration gradient, valence state in single/ multiple particle level (chemical inhomogeneity)		
Sample Ecory				- 3D tomography		
2025-05-02	POSTE POHANG UNIVERSITY OF SCIENCE AND			: 3D images can be reconstructed using a series of x-ray images collected at different angles.	NPG Asia Materials (2018	3) 10: 563-580 55

포항가속기연구소(PAL) & Korea-4GSR

- 3세대 방사광가속기인 PLS-II의 성공적인 구축과 운영으로부터, 산업적 활 용과 고도화된 연구 수요를 충족하기 위해 4세대 방사광가속기의 필요성이 대두됨
- 다목적방사광가속기(Korea-4GSR)는 4세대 방사광가속기로서 세계최고수 준의 방사광 제공 및 활용을 목표로 함.
- PAL은 Korea-4GSR 구축사업의 공동연구기관으로서 가속장치 개발과 초 기 빔라인 설계 및 설치를 담당하고 있음.

포항방사광가속기 성과

구축 및 운영

|--|

학술적 성과

Impact Factor

다목적방사광가속기(Korea-4GSR) 구축사업 개요

주관기관: 한국기초과학지원연구원 공동연구기관: 포항가속기연구소 추진주체: 과기정통부/충청북도 청주시

KBSI 약 PAL이 함께 만드는

대한민국 과학의 밝은 빛

사업기간: 2021.07.01 ~ 2029.12.31

총사업비: 1조 787억원 (국비 8,787억원, 지방비 2,000억원)

부지: 청주시 오창읍 후기리 테크노폴리스 일반산업단지 면적: 540,000㎡ (기본부지 310,000㎡ 포함) / 연건평 69,400㎡ 저장링 주요 변수

둘레	798.8 m					
빔에너지	4 GeV					
빔전류	400 mA					
에미턴스	62 pm·rad					
광원 크기	약 19 x 6 µm²					
밝기	10 ²¹ ~ 10 ²² phs/s/mm ² /mrad ²					
결맞음 세기	(@10 keV)~ 10 ¹³ ph/s/mm ²					

KBSI 약 PAL이 함께 만드는 대한민국 과학의 밝은 빛

Korea-4GSR 초기 10기 빔라인 사양 개요

	구분	광자 에너지	광원	실험기법	활용분야
사업	ID21: 바이오신약-바이오소각산란	5~20keV	IVU 24	용액 소각산란	바이오
우선지원	ID24: 소재 구조 분석	5 ~40keV	IVU 24	분발회절 & 흡수분광	신소재, 에너지 소재
임다인	ID26: 연엑스선 나노 탐침	0.1~5keV	IVU24 +EPU78	엑스선 광전자 분광법 엑스선 흡수 분광법 주사 광전자 현미경	반도체, 신소재
	ID25: 나노 각분해광전자분광	0.1~2keV	EPU98	각분해 광전자분광	반도체, 신소재
	ID03: 결맞음 엑스선 회절	3~30keV	IVU22	결맞음회절 영상법 엑스선 회절	반도체, 신소재, 지구과학, 화학
a J T A	ID04: 결맞음 소각산란	7~30keV	IVU20	소각산란/광각산란 엑스선 광자 상관 분광법	신소재, 화학
빔라인	ID23: 실시간 흡수분광	4~40keV	IVU 24	엑스선 광전자 분광법 엑스선 흡수 분광법	신소재, 환경, 지구과학, 화학
	ID22: 생체분자 나노결정학	8~25keV	IVU20	나노결정구조	바이오
	BM10: 고에너지 현미경	5~100keV	BM	투영 영상법	신소재, 에너지 소재, 바이오
	ID10: 나노 탐침	5~25keV	IVU24	주사형 회절 영상법 엑스선 형광 현미경 단층 촬영법	반도체, 에너지 소재, 지구과학, 화학, 환경