

Micro-patterned Ga₂O₃ Thin Films for Synchrotron X-ray Photodetectors

Thursday, November 13, 2025 2:55 PM (25 minutes)

Ga₂O₃, with its wide bandgap (4.9 eV) and high breakdown field (8 MV/cm), has been widely studied for high-power electronics and solar-blind photodetectors, and more recently explored for X-ray detection, though mostly with in-house sources.

Here we demonstrate a micro-patterned device fabricated by H₃PO₄ wet etching at 120 °C on Ga₂O₃/sapphire (0001) thin films synthesized by RF powder sputtering, and evaluate its X-ray sensing under a 10 keV synchrotron micro-beam focused to $\sim 10 \times 30 \mu\text{m}^2$. Four-point probe measurements were performed while toggling irradiation at bias voltages from self-powered (0 – 0.1 V) up to 20 V. Compared with unpatterned devices, the micro-patterned Ga₂O₃ exhibits an order-of magnitude higher current gain, reaching photocurrents of $\sim 1 \mu\text{A}$, a practical detection level. The photocurrent-to-darkcurrent ratio (PDCR) improves more modestly, due to trap sites introduced at etched sidewalls, which increase the darkcurrent.

Sensing responses were fitted with a simple two-component model, yielding rise and decay times comparable to unpatterned films. This indicates that micro-patterning mainly enhances collection efficiency without altering intrinsic recombination. These findings demonstrate a simple and scalable strategy to improve Ga₂O₃ X-ray photodetectors without complex device architectures. Detailed results on X-ray photo-current measurements will be presented.

Paper submission Plan

Yes

Best Presentation

No

Primary author: Dr CHOI, Sukjune (Gwangju Institute of Science and Technology)

Co-authors: Ms CHA, Su Yeon (Chosun University); Mr HAN, Seonghyun (Gwangju Institute of Science and Technology); Ms HAM, Daseul (Pohang Accelerator Laboratory); Dr LEE, Su Yong (Pohang Accelerator Laboratory); Prof. KANG, Hyon Chol (Chosun University); Prof. NOH, Do Young (Gwangju Institute of Science and Technology)

Presenter: Dr CHOI, Sukjune (Gwangju Institute of Science and Technology)

Track Classification: ICABU: Working group 3: Beamline and instrumentation