

특론: 가속기 실험실습 |

(NUCE719P-01/PHYS715P-01, 정모세)

광자빔 진단 (Streak Camera & SR Interferometer)

김 창 범

포항가속기연구소 PLS-II 가속장치부

Diagnostics for PAL-XFEL

Parameter	Instruments	Number	Resolution
Beam Position &	Stripline BPM	160	< 5 um
Beam Energy	Cavity BPM	49	< 1 um
Beam Size	Screen Monitor	54	< 10 um
	Wire Scanner	9	< 10 um
Bunch Length	Coherent Radiation Monitor	4	-
	Transverse Deflecting Cavity	3	< 10 fs
Beam Charge	Turbo ICT	10	< 1 pC
Beam Arrival Time	Beam Arrival Time Monitor	10	< 30 fs
Beam Loss	Beam Loss Monitor	26	-

Bunch Length Monitor

PAUL SCHERRER INSTITUT

Principle of Bunch Length Measurement with RF Deflector

 $\Delta y_B = \frac{\omega_{RF} V_T}{2c E/e} \cos(\varphi_{RF}) \quad L_B \Delta L_{def-screen}$

Assuming...:

- $-\phi_{RF} = 0^{\circ}$ at the center of the bunch results in shearing of particle density distribution without changing mean particle position
- longitudinal stability (bunch arrival time vs. RF phase) must be high in case of averaging of measurements
- pencil-like beam (zero-emittance)
- no beam offset in the RF deflector

Example:					
Parameters for 250 MeV PSI FEL Injector Test Facility					
ω _{RF}	=	$2 \pi \cdot 3$	GHz		
V _T	=	2.5	MV		
c	=	3 · 108	ms⁻¹		
E	=	250	MeV		
L _B (FWHM)	=	600	fs		
5	=	200	μm		
ΔL _{def-screen}	=	12.25	m		
Δy _B	=	770	μm		

Transverse Deflection Mode

Transverse Deflecting Cavity

Diagnostic Beamline of PLS-II (1B)

Diagnostic Beamline of PLS-II (1B)

Inside of Diagnostic Beamline Hutch (1B)

Streak Camera

Streak Camera

Working Principle of Streak Camera

Bunch Length Measurement

Each bunches in the storage ring are shown. The time scale of horizontal axis is 100 ns. The vertical one is 500 ps.

Synchrotron Damping

Images of 5-6 kHz oscillation when the noise of same frequency is detected from the beam position monitor. The horizontal axis is 1 ms.

Linac Bunch Length Measurement

PLS-II Electron Gun

PLS-II Thermionic Electron Gun

Circuit Diagram of Electron Gun

Layout of PLS-II Injector

Longitudinal Oscillation of Injected Beam

Long Pulse vs. Short Pulse

Injection Efficiency of Short Pulse Beam

Short pulse case Measured Charge: 200 pC

Two times improvement of injection efficiency

Streak Camera Image of Injected Beam

Streak camera delay: 0

Synchronized vs. Non Synchronized Injection

Streak Camera Image

After synchronization and pulse width reduction

Beam Size Monitor

X-ray Pinhole Camera

X-ray Pinhole Image

Interference with partially coherent light

FIGURE 1. A simple representation of the visibility of an interferogram and light source size. (a) A point source yields an interferogram with a visibility of 1; (b) an ensemble of point source yields a reduced visibility.

Source Size and Interference

$$I = I_0 \left\{ \frac{\sin(u)}{u} \right\}^2 \left\{ 1 + \left| \frac{2J_1(v)}{v} \right| \cos(\delta) \right\}$$

$$u = \frac{kax}{R}, v = \frac{k\xi d}{L}, \delta = \frac{kdx}{R}$$

k: wavelength of the light a: aperture size of slit ξ: source size

d: distance between slit and screen

Figure 2

Configuration of the interference with a finite light source. The point O is defined as the centre of the slits. d is the distance between the two square apertures. R is the distance between points O and P on the screen. L is the distance between the source and the diffracting mask. D is the distance from the diffracting mask to the detection screen.

Reference

Principles of Optics 7th edition Max Born and Emil Wolf

Electromagnetic Theory of Propagation, Interference and Diffraction of Light Principles of Optics

Electromagnetic Theory of Propagation, Interference and Diffraction of Light

- Max Born and Emil Wolf

Chapter X

Interference and diffraction with partially coherent light

(p. 554 ~ 632)

Example of Interferogram

2D Visible Light Interferometry

Inside of Diagnostic Beamline Hutch

SR Interferometer

Optical Layout

Measurement of Profile of Vertically Polarised Radiation

Measurement Result

Matlab Simulation

- k = 0.65 % Wave length of light
- a = 0.2 % Half width of slit
- b = 0.1 % Beam size
- c = 8 % Distance between two slits
- mu = k * a * y
- nu = k * b * c
- delta = k * c * y
- I = {sinc(mu)}^2 * [1 + abs{2 * besselj(1,nu) / nu} * cos(delta)]

- k = 0.65
 - Wave length of light
- a = 0.2
 - Half width of slit
- b = 0.1
 - Source size
- c = 8
 - Distance between two slits

• k = 0.65

• Wave length of light

- a = 0.15
 - Half width of slit
- b = 0.1
 - Source size
- c = 8
 - Distance between two slits

- k = 0.65
 - Wave length of light
- a = 0.2
 - Half width of slit
- b = 0.1
 - Source size
- c = 8
 - Distance between two slits

- k = 0.65
 - Wave length of light
- a = 0.2
 - Half width of slit
- b = 0.2
 - Source size
- c = 8
 - Distance between two slits

- k = 0.65
 - Wave length of light
- a = 0.2
 - Half width of slit
- b = 0.1
 - Source size
- c = 8
 - Distance between two slits

- k = 0.65
 - Wave length of light
- a = 0.2
 - Half width of slit
- b = 0.1
 - Source size
- c = 16
 - Distance between two slits

Slit Optimization of SR Interferometer

- Variable parameters
 - Width of slit, Distance between two slits
- Width of slit
 - Related to image size and intensity
- Distance between two slits
 - Related to local minimum and peak distance
 - Beam size can not be measured if local minimum is close to zero
 - Error can be increased if peak distance is too small

실험 방법

- 1B 진단 빔라인의 구조를 이해한다.
- SR Interferometer 구조를 알아보고 빔 크기 측정 원리를 이해한다.
- Slit 간격을 변화시킬 때 간섭무늬의 변화를 관찰한다.
- 빔 크기를 측정하는 최적 조건을 생각해본다.