Research Progress on Development of an Absolute Coordinate Calibration Device for Beam Profile Monitor

> Friday, 11 April 2025 윤 주 환

1. Review of the Concept

- Scintillating Screen based BPRM
- Perspective Calibration

2. Experiment Setup

- BPRM Stage scheme
- Device Order & Setting
- Device Performance Test

– 3. Experiment

- Distorted Image Measurement
- Image Transformation into 2D Plane

4. Result Analysis

- Comparison of Original & Measured
- 1D (x, y axis) Intensity Graph Fitting
- Fitting Error

Review of the Concept

Defects of the existing BPRM

- Inclined scintillating screen
- Inaccurate position coordinates
- Resulting in distorted beam profile

Goal of the research

- Restoring original screen space
- Identifying real beam profile

Method of image calibration

- Obtain the relationship between pixel space and real space
- Transform all coordinates

Perspective Calibration

- Flattening the 3D distorted image into 2D projection space.
- Nominate 4 pairs of coordinate on both planes, to solve 3x3 matrix.

Experimental Setup

Order Laser Optics Equipment

BPRM Stage Alignment

- Active area in which two glass grids are linearly parallel.
- The grid arrangement becomes more skewed towards the edge.

2-Axis Motor Repeatability

Raw Data Acquisition

- Collect motley samples of YAG screen images.
- Each screen has different arrangement.

Beam Profile Monitoring Method

16	# 변환 행렬 계산
17	def find_coeffs(pr, px): 1개의 사용 위치
18	нин
19	pr : after transform
20	px : before transform
21	
22	if len(px) != 4 or len(pr) != 4:
23	<pre>print('error : number of point must be 4')</pre>
24	return None
25	# 점이 반드시 네 개가 되어야 함
26	
27	M0 = []
28	<pre>for p1, p2 in zip(pr, px):</pre>
29	M0.append([p1[0], p1[1], 1.0, 0.0, 0.0, 0.0, -p2[0]*p1[0], -p2[0]*p1[1]])
30	M0.append([0.0, 0.0, 0.0, p1[0], p1[1], 1.0, -p2[1]*p1[0], -p2[1]*p1[1]])
31	
32	<u>A</u> = np. <mark>matrix</mark> (M0, dtype=np. <mark>float64</mark>)
33	<u>B</u> = np. <mark>array</mark> (px).reshape(8)
34	res = np. <mark>dot</mark> (np. <mark>linalg</mark> .inv(A.T * A) * A.T, B)
35	
36	return np. <mark>array</mark> (res).reshape(8)
37	# 8개의 변환 행렬 계수
	0
	0
	0
315	c = Calibration(scr_pic: 'test4.JPG', realcoord: [(-10, 10), (-10, -10), (10, -10), (10, 10)])
316	# 이미지 픽셀 좌표와 연결

Beam Profile Monitoring Method

Real Space Image

- Restored to original screen size
- Projection showing transverse beam space

Pixel Space Image

- Indicate the beam intensity
- Can be used to plot 1D graph

BPRM Measurement & Analysis

• Blank area (Outside of the screen)

Summary & Future Plan

BPRM Method

- Perspective calibration
- 2D motorized BPRM stage
- Beam profile graph fitting

Data Acquisition & Analysis

- Utilize motorized axis when collecting 4 pairs of boundary condition coordinates
- Establish the method of analyzing a set of data
- Fill out and submit the paper

Τηάνκ Υου