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Abstract
In accelerator systems, magnets play a critical role in

guiding and focusing charged particles to maintain stable
trajectories. To achieve this, various electromagnets such as
dipoles, quadrupoles, and sextupoles are carefully designed,
fabricated, and subjected to precise field measurements. En-
suring that the measured magnetic fields closely match the
design specifications is essential for accelerator performance.
This paper presents a basic analysis of magnet systems, fo-
cusing on dipole and quadrupole magnets, and describes the
methods used for their field measurements.

INTRODUCTION
Magnets are essential components in accelerator systems,

serving to steer and focus charged particles along stable or-
bits. To achieve precise control over particle trajectories, var-
ious types of electromagnets, such as dipoles, quadrupoles,
and sextupoles, are employed. Each type of magnet plays a
distinct role: dipoles provide bending forces, quadrupoles
offer focusing forces, and sextupoles correct for chromatic
aberrations.

The design, fabrication, and measurement of these mag-
nets are critical processes to ensure that the actual magnetic
fields closely match the theoretical requirements. Any devia-
tion from the intended field quality can significantly impact
the beam dynamics and the overall performance of the ac-
celerator.

In this study, we focus on the basic analysis of dipole and
quadrupole magnets. We describe the principles underlying
their design and fabrication, and present field measurement
techniques used to verify their performance against design
specifications.

BASIC ANALYSIS OF MAGNETS
The role of magnets in an accelerator can be described

fundamentally through the Lorentz force equation:

®F = 𝑞( ®E + ®𝑣 × ®B), (1)

where 𝑞, ®𝑣 is the charge and velocity of the particles, ®E, ®B
are the electric field and magnetic field, ®F is the Lorentz
force.

In most of the accelerator, magnets primarily exert a force
that is perpendicular to the particle’s direction of motion,
effectively bending the trajectory of the charged particles.
Before delving into detailed analysis, we briefly introduce
the specific functions of different types of magnets used in
accelerators.
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Magnets components
Magnets are used to bend the trajectory of charged par-

ticles. In regions where no magnetic field is present, the
space is referred to as a drift. In a drift space, a particle
moves freely according to its initial momentum without any
external forces acting on it.

We define the transverse coordinates of a particle as 𝑥 and
𝑦, and the longitudinal coordinate as 𝑧. Let 𝑠 denote the path
length along the reference trajectory, and 𝑥′ represent the
angle between the particle’s trajectory and the 𝑠-axis in the
𝑥-plane.

The transverse motion of the particle in a drift space can
be expressed as

𝑥(𝑠) = 𝑥0 + 𝑥′0𝑠, (2)

where 𝑥0 and 𝑥′0 are the initial position and angle of the
particle at the beginning of the drift.

A dipole magnet provides a uniform magnetic field that
bends the trajectory of charged particles. Assuming that the
magnetic field ®𝐵 is oriented along the vertical 𝑦 direction,
the Lorentz force causes the particle to bend in the horizontal
𝑥 plane. This mechanism is shown in Fig. 1.

Figure 1: Basic structure of normal dipole magnet. The
magnetic field strength is uniform across the magnet.

Neglecting the electric field, the equation of motion can
be written as

𝑥′′ =
1
𝜌
, (3)

where 𝜌 is the bending radius of the particle’s trajectory
determined by the magnetic field strength and particle mo-
mentum, shown as below:

𝐵𝜌 =
𝑝

𝑞
, (4)

where 𝑝 is the particle momentum. The quantity 𝐵𝜌, known
as the magnetic rigidity, characterizes how resistant a
charged particle is to bending under an external magnetic
field.



A quadrupole magnet shown in Fig. 2 generates a mag-
netic field that varies linearly with the transverse position.
Unlike dipoles, which bend the trajectory, quadrupoles focus
or defocus the particle beam in transverse directions.

Figure 2: The basic structure of normal quadrupole magnet.
The magnetic field strength increases linearly with the trans-
verse position.

The ideal magnetic field components of a quadrupole are
given by

𝐵𝑥 = 𝐺𝑦, 𝐵𝑦 = −𝐺𝑥, (5)

where 𝐺 is the magnetic field gradient (𝐺 =
𝜕𝐵𝑥

𝜕𝑥
= − 𝜕𝐵𝑦

𝜕𝑦
).

The resulting Lorentz force leads to the following equations
of motion [1]:

𝑑2𝑥

𝑑𝑠2 + 𝑘𝑥 = 0, (6)

𝑑2𝑦

𝑑𝑠2 − 𝑘𝑦 = 0, (7)

where the focusing strength 𝑘 is defined as

𝑘 =
𝑞𝐺

𝑝
. (8)

In this configuration, the quadrupole acts as a focusing
lens in one transverse plane and a defocusing lens in the
other. However, as the transverse displacement of a parti-
cle increases, the focusing or defocusing force exerted by
a quadrupole magnet also increases. By combining two
quadrupole magnets with opposite focusing directions, net
focusing in both transverse planes can be achieved.

In addition, sextupole magnets are used to correct chro-
matic aberrations, and octupole magnets are employed to
control higher-order nonlinear effects. However, these com-
ponents are beyond the scope of this paper and will not be
discussed further.

Multipole analysis
In a magnetostatic with no current sources, the magnetic

field satisfies the ∇ × 𝐵 = 0, and a magnetic scalar potential
can be defined. In the complex plane, the potential can be
decomposed into a real part 𝐴(𝑥, 𝑦) and an imaginary part
𝑉 (𝑥, 𝑦), and represented as a complex potential 𝐹 given
by [2]

𝐹 (𝑥, 𝑦) = 𝐴(𝑥, 𝑦) + 𝑖𝑉 (𝑥, 𝑦). (9)

Since 𝐹 acts as a scalar potential, its derivatives with
respect to spatial coordinates yield the magnetic field com-
ponents. The physical 2D coordinates are denoted as (𝑥, 𝑦),
and the position is represented using the complex variable.

𝑧 = 𝑥 + 𝑖𝑦. (10)
The complex potential 𝐹 (𝑧) is an analytic function of 𝑧,

and the transverse magnetic field components can be ob-
tained by differentiating 𝐹 with respect to 𝑧.

The complex potential 𝐹 (𝑧) can be expressed as a power
series of 𝑧, where each power corresponds to a specific mag-
netic multipole order.

𝐹 (𝑧) =
∞∑︁
𝑛=1

𝐶𝑛𝑧
𝑛 (11)

In particular, 𝑛 = 1 represents a dipole, 𝑛 = 2 represents
a quadrupole, etc. Using the polar representation of the
complex variable 𝑧 as

𝑧 = |𝑧 |𝑒𝑖 𝜃 ,
the form of 𝐹 (𝑧) and the corresponding magnetic field 𝐵 for
each order 𝑛 can be expressed as shown in Table 1.

Table 1: Multipole expansion of complex potential and cor-
responding magnetic field

Order 𝑛 Complex Potential 𝐹 (𝑧) Magnetic Field 𝐵

1 𝐶1 |𝑧 |𝑒𝑖 𝜃 𝑖𝐶1
2 𝐶2 |𝑧 |2𝑒𝑖2𝜃 2𝑖𝐶2 |𝑧 |𝑒𝑖 𝜃
3 𝐶3 |𝑧 |3𝑒𝑖3𝜃 3𝑖𝐶3 |𝑧 |2𝑒𝑖2𝜃

The function 𝐹 (𝑧) satisfies the Cauchy-Riemann condi-
tions, so this is an analytic function. As a result, the transfor-
mation from (𝑥, 𝑦) to (𝐴,𝑉) can be interpreted as a confor-
mal mapping. A conformal mapping preserves the angles
between curves before and after the transformation.

In practical magnet design, magnets with higher-order
multipoles such as quadrupoles, sextupoles, often exhibit
complex geometrical structures. However, by employing
conformal mappings, it is possible to simplify the design
process: high-order magnetic field structures can be system-
atically generated from well-designed dipole fields through
conformal mappings (see Fig. 3).

Figure 3: Transformation of a dipole-like structure into a
quadrupole-like structure through the conformal mapping
𝑤 = 𝑧2.



MEASUREMENTS OF DIPOLE AND
QUADRUPOLE MAGNETS

Once the magnet has been designed, it is essential to
verify that the resulting magnetic field matches the design
specifications. The magnetic field measurement methods
are broadly classified into two categories: the rotating coil
method and the Hall probe method. In the following sections,
these techniques will be described in detail.

Rotating coil method
The rotating coil method is a widely used technique for

measuring the magnetic field distribution, especially for
extracting multipole components of magnets such as dipoles,
quadrupoles, and sextupoles. In this method, a coil is placed
inside the magnetic field and rotated mechanically around
the center of the magnet.

As the coil rotates within the magnetic field, a voltage
is induced according to Faraday’s law of electromagnetic
induction. The induced voltage is proportional to the rate of
change of the magnetic flux through the coil. By recording
the induced voltage as a function of the rotation angle, the
magnetic flux can be reconstructed (see Fig. 4).

Figure 4: The rotating coil setup used in the experiment. A
coil is placed inside the quadrupole magnet and rotated to
measure the magnetic field.

The recorded signal can be decomposed using Fourier
analysis, allowing the extraction of the multipole compo-
nents present in the magnet. Each harmonic component in
the Fourier series corresponds to a specific multipole: the
first harmonic represents the dipole term, the second har-
monic represents the quadrupole term, the third harmonic
corresponds to the sextupole term, and so on.

This method provides high-precision measurements of in-
tegrated field quality and is particularly useful for character-
izing the relative strengths and orientations of higher-order
multipole errors.

Hall probe method
The Hall probe method is also used for measuring mag-

netic fields, particularly suitable for mapping the local mag-

netic field distribution. A Hall probe utilizes the Hall effect,
where a voltage is generated across a conductor when it is
placed in a magnetic field perpendicular to the current flow.

In this method, a Hall sensor is positioned at specific
points within the magnet aperture to measure the local mag-
netic field components, typically 𝐵𝑥 , 𝐵𝑦 , and 𝐵𝑧 . By mov-
ing the Hall probe along a path, a detailed field map can be
obtained (see Fig. 5).

Figure 5: Hall probe system and the bending magnet used
for magnetic field measurement. The Hall probe scans along
the beam trajectory to measure the field profile.

This technique is particularly effective for capturing field
variations near the magnet edges, fringe fields, and in regions
where high spatial resolution is required. However, Hall
probe measurements are generally more sensitive to noise
compared to rotating coil measurements and may require
careful calibration and correction procedures to achieve high
accuracy.

The Hall probe method is mainly used for validating the
field uniformity, detecting local field imperfections, and
assisting in the alignment of magnet systems.

CONCLUSION
In this work, we introduced basic magnetic components

such as drifts, dipoles, quadrupoles, and explained how their
fields can be described using complex potentials and confor-
mal mappings. After designing the magnets, it is important
to check if the actual magnetic field matches the design.
We briefly introduced two main measurement methods: the
rotating coil method for extracting multipole components,
and the Hall probe method for mapping local fields. These
techniques help ensure that the magnets perform as expected
in accelerator systems.
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