Probing Element-Specific Magnetism in NiO Thin Films Using Soft X-ray Spectroscopy

Dahee Jang, ID: 20252087, Div. of Advanced Nuclear Engineering, POSTECH, Pohang, Republic of Korea

Abstract

This study explores the magnetic and electronic properties of NiO thin films using soft X-ray absorption spectroscopy (XAS) and Xray magnetic circular dichroism (XMCD) at the PLS-II 2A beamline. Measurements at the oxygen K-edge and nickel L-edge revealed insights into unoccupied electronic states and element-specific magnetism. The XMCD response at the oxygen edge indicates induced magnetism through hybridization with nickel. Experimental configurations, detection techniques, and theoretical background are presented to highlight synchrotron-based spectroscopy's capabilities in probing interfacial magnetism in transition metal oxides.

1 Introduction

Magnetic and electronic properties at the atomic level play a critical role in emerging technologies such as spintronics, energy storage, and next-generation semiconductors. Soft X-ray spectroscopic techniques—X-ray Absorption Spectroscopy (XAS) and X-ray Magnetic Circular Dichroism (XMCD)—are essential tools for element-specific characterization of such properties.

In this work, we investigate NiO thin films at the Pohang Light Source-II (PLS-II) using the 2A beamline equipped with an Elliptically Polarized Undulator (EPU). The focus lies on spectral features at the oxygen K-edge and the nickel L-edge, highlighting the electronic structure and spin-resolved magnetic behavior of the system.

2 Theory and Background

2.1 X-ray Absorption Spectroscopy (XAS)

XAS probes the absorption of photons as their energy is swept across core-level binding energies. The spectrum reveals element-specific unoccupied states and is categorized into two regimes: X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS). The absorption coefficient $\mu(E)$ is derived using the Beer– Lambert law:

$$I_t = I_0 e^{-\mu(E)t},\tag{1}$$

where I_t is the transmitted intensity through a sample of thickness t.

Detection modes include total electron yield (TEY), fluorescence yield (FY), and transmission. TEY is highly surface-sensitive (depth \sim few nm), whereas FY captures bulk features (depth \sim hundreds of nm).

2.2 X-ray Magnetic Circular Dichroism (XMCD)

XMCD isolates magnetic contributions by analyzing the difference in absorption between leftand right-circularly polarized X-rays:

$$XMCD(\omega) = \mu^{+}(\omega) - \mu^{-}(\omega).$$
 (2)

This difference arises due to spin-polarized transitions and can be used to extract orbital and spin magnetic moments via sum rules:

$$m_{
m orb} \propto \int_{L_3+L_2} (\mu^+ - \mu^-) \, d\omega,$$

 $m_{
m spin} \propto \int_{L_3} (\mu^+ - \mu^-) \, d\omega - \frac{4}{3} \int_{L_2} (\mu^+ - \mu^-) \, d\omega.$

3 Experimental Setup

Experiments were performed at the 2A beamline at PLS-II, optimized for soft X-ray studies. The EPU allows for tuning of polarization and photon energy. Monochromatized beams are focused onto the sample using spherical grating mirrors and toroidal optics.

Figure 1: Schematic of the PLS-II 2A beamline and experimental end-station.

Samples were mounted in an ultra-high vacuum chamber (10^{-9} Torr). TEY was used for XAS data, while XMCD measurements were achieved by flipping the magnetic field under fixed polarization.

4 Results and Discussion

4.1 XAS at the Oxygen K-edge

XAS spectra revealed a prominent absorption peak at 530 eV, corresponding to transitions from O 1s to unoccupied 2p states. This indicates strong hybridization and provides a fingerprint for the electronic structure.

4.2 XMCD at the Nickel L-edge

XMCD spectra showed clear dichroic signals at the L_3 and L_2 edges (850–853 eV), confirming the presence of spin-polarized electronic states in Ni. A secondary XMCD feature was also observed near the oxygen edge, suggesting induced magnetism in oxygen atoms through exchange interaction.

These measurements validate the sensitivity of XMCD to element-specific magnetic ordering and underline the role of hybridization at interfaces in oxides.

Figure 2: Oxygen K-edge XAS spectrum of NiO thin film, indicating hybridization with neighboring states.

Figure 3: Nickel L-edge XMCD spectrum showing spin and orbital magnetic contributions in NiO.

5 Conclusion

The combined use of XAS and XMCD at the PLS-II 2A beamline enables detailed insights into the electronic and magnetic structures of NiO thin films. The results not only confirm the expected transition features but also highlight oxygen-induced magnetic behavior, making these methods vital for understanding magnetism in correlated oxide systems. Such insights are essential for developing spintronic and magnetoelectronic devices.

Acknowledgements

This work was supported by Pohang Accelerator Laboratory (PAL). We thank Dr. Y. H. Kim for his guidance on X-ray spectroscopy and beamline operation.

References

[1] Y. Kim, "Soft X-ray Spectroscopy for Next-Generation Devices: Applications to AI Semiconductors and Rechargeable Batteries", Lecture Notes, NUCE719P-01, Pohang, Republic of Korea, May, 2025.